
Streaming Irregular Arrays
Robert Clifton-Everest

University of New South Wales
Australia

robertce@cse.unsw.edu.au

Trevor L. McDonell
University of New South Wales

Australia
tmcdonell@cse.unsw.edu.au

Manuel M. T. Chakravarty
University of New South Wales

Australia
chak@cse.unsw.edu.au

Gabriele Keller
University of New South Wales

Australia
keller@cse.unsw.edu.au

Abstract
Previous work has demonstrated that it is possible to generate
efficient and highly parallel code formulticore CPUs andGPUs from
combinator-based array languages for a range of applications. That
work, however, has been limited to operating on flat, rectangular
structures without any facilities for irregularity or nesting.

In this paper, we show that even a limited form of nesting pro-
vides substantial benefits both in terms of the expressiveness of
the language (increasing modularity and providing support for
simple irregular structures) and the portability of the code (in-
creasing portability across resource-constrained devices, such as
GPUs). Specifically, we generalise Blelloch’s flattening transforma-
tion along two lines: (1) we explicitly distinguish between definitely
regular and potentially irregular computations; and (2) we handle
multidimensional arrays. We demonstrate the utility of this general-
isation by an extension of the embedded array language Accelerate
to include irregular streams of multidimensional arrays. We discuss
code generation, optimisation, and irregular stream scheduling as
well as a range of benchmarks on both multicore CPUs and GPUs.

CCS Concepts • Computing methodologies → Parallel pro-
gramming languages; • Software and its engineering→ Par-
allel programming languages; Functional languages;Domain
specific languages; •Theory of computation→ Vector / stream-
ing algorithms;

Keywords Data parallelism; Functional programming; Streaming

ACM Reference Format:
Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty,
and Gabriele Keller. 2017. Streaming Irregular Arrays. In Proceedings of 10th
ACM SIGPLAN International Haskell Symposium, Oxford, UK, September 7-8,
2017 (Haskell’17), 12 pages.
https://doi.org/10.1145/3122955.3122971

1 Introduction
Combinator-based array languages strike a good balance between
a high-level declarative notation and good parallel performance [1,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell’17, September 7-8, 2017, Oxford, UK
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5182-9/17/09. . . $15.00
https://doi.org/10.1145/3122955.3122971

28, 29, 34, 36]. For example, we can write the dot-product of two
vectors of floating point numbers xs and ys using the embedded
Accelerate1 array language as follows:
dotp :: Acc (Vector Float)

→ Acc (Vector Float)

→ Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Aside from the types, this is a natural way to express a dot-product
operation in Haskell. It abstracts away details, such as how to effec-
tively use multiple cores, how to generate vector SIMD instructions,
or how to make use of a compute accelerator such as a GPU. In-
deed, since this high-level description does not mention any of
these details, it remains portable to all of these targets [28].

This works nicely for code operating on regular, n-dimensional
arrays. Despite repeated attempts [3, 17, 24, 32], it proves difficult
to extend it to computations on irregular structures (such as sparse
matrices or streams of arrays of varying sizes) without compromis-
ing the performance of the regular parts of a computation. This is
a severe limitation as having nested irregular structures addresses
two important concerns: (1) it supports directly representing and
computing with sparse data; and (2) it facilitates modularity (as
discussed in previous work).

In addition, first-class support for irregularity helps to declara-
tively decompose computations such that a compiler can generate
code for resource-constrained devices. For example, if we have
many vectors vi of which we need to compute the dot-product
with w, we could put all the vi into a matrix V and perform a matrix
vector multiplication of V with w. On a resource-constrained device,
such as a GPU with limited main memory, this may fail once V
becomes too large. The alternative is to use a stream of vectors vi
and map the dot-product over that stream.
dotpstream :: Acc (Vector Float)

→ Seq [Vector Float]

→ Seq [Scalar Float]

dotpstream w vs = mapSeq (dotp w) vs

Given this code, it is up to the compiler and runtime system to
subdivide the stream into chunks of vectors vi to vi+j , such that
simultaneously performing the dot-product for j vectors allows for
optimal resource utilisation on the specific hardware used for execu-
tion. In contrast to matrix operations, stream operations are chosen
such that partitioning them into chunks is always semantically
sound (without requiring static analysis or similar).

Despite these advantages, irregular parallelism comes with a se-
rious downside: code generators can usually produce significantly

1See http://acceleratehs.org

https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

more efficient code for regular computations, as the additional con-
straint of regularity allows for far-reaching optimisations, which is
especially important for SIMD architectures such as GPUs. Conse-
quently, the additional expressiveness of irregularity is a double-
edged sword unless all regular computations can be identified and
optimised as usual, even when they occur as part of a larger irregu-
lar computation.

The present work tackles this problem in the following manner:
(1) we extend Blelloch’s flattening transformation [5] to multi-
dimensional regular arrays; (2) we apply the extended transfor-
mation to a generalisation of Accelerate with streams that allow
for one level of extra nesting; and (3) we describe a scheduler that
dynamically determines suitable chunk sizes for the execution of
stream computations on varying hardware.

Specifically, we make the following contributions:
• We extend previous work on combinator-based streaming
programs in Accelerate [25] by generalising to irregular se-
quences, where each piece of the sequence may be a different
size, whilemaintaining execution efficiency for (sub)programs
containing only regular subdivisions (Section 3).
• We introduce a novel extension to Blelloch’s flatting trans-
formation which allows us to distinguish between regular
and irregular sequence computations, enabling more effi-
cient execution of regular sequences, while still supporting
fully irregular sequences (Section 4).
• We generalise the flattening transformation to multidimen-
sional arrays, and describe its implementation which pre-
serves static type information (Section 4).
• We describe a series of static type-preserving optimisations
which improve the performance of both array and sequence
computations (Section 6).
• We evaluate this work through a series of example programs
and benchmarks (Section 7).

This paper expands on existing work on the embedded language Ac-
celerate [8, 28, 29] and its extension to sequence computations [25].
The source code is available from https://github.com/AccelerateHS/
accelerate/tree/feature/sequences.

2 Background: Accelerate
Accelerate is a parallel array language consisting of a carefully se-
lected set of operations on multidimensional arrays, which can be
compiled efficiently to bulk-parallel SIMD hardware. Accelerate
is deeply embedded in Haskell, meaning that we write Accelerate
programs with (slightly stylised) Haskell syntax. Accelerate code
embedded in Haskell is not compiled to SIMD code by the Haskell
compiler; instead, the Accelerate library includes a runtime com-
piler that generates parallel SIMD code at application runtime. The
collective operations in Accelerate are based on the scan-vector
model [9, 37], and consist of multi-dimensional variants of familiar
Haskell list operations such as map and fold, as well as array-
specific operations such as index permutations.

For example, recall the dot-product program from Section 1.
The function dotp consumes two one-dimensional arrays (Vector
or Array DIM1) of values, and produces a single result as output
(Scalar or Array DIM0). The type Acc indicates that the inputs and
outputs to this function are embedded Accelerate computations—
they are evaluated in the object language of dynamically gener-
ated parallel code, rather than the meta language, which is vanilla

Haskell. The Accelerate code for dotp is almost identical to what we
would write in standard Haskell over lists, and is certainly more con-
cise than an explicitly GPU-accelerated or SIMD-vectorized2 low-
level dot-product, while still compiling to efficient code [8, 28, 29].

The functions zipWith and fold are defined by the Accelerate
library and have highly parallel semantics, supporting up to as
many parallel threads as data elements. The type of fold is:
fold :: (Shape sh, Elt e)

⇒ (Exp e → Exp e → Exp e)

→ Exp e

→ Acc (Array (sh:.Int) e)

→ Acc (Array sh e)

The type classes Shape and Elt indicate that a type is admissible
as an array shape and array element, respectively. We use snoc-
lists formed from Z and (:.) at both the type and value level, to
define the dimensionality and extent of an array, or the index of
a particular element [8, 21]. Array elements consist of signed and
unsigned integers, floating point numbers, Char, Bool, indexes
formed from Z and (:.), as well as nested tuples of these.

The type signature for fold also shows how Accelerate is strati-
fied into collective array computations, represented by terms of the
type Acc t, and scalar expressions Exp t. Values of type Acc t and
Exp t do not execute computations directly, rather they represent
abstract syntax trees (ASTs) constituting a computation that, once
executed, will yield a value of type t. Collective operations com-
prise many scalar operations which are executed in data-parallel,
but scalar operations can not initiate collective operations. This
stratification helps to statically exclude unbound nested, irregular
parallelism, as discussed in our previous work [8, 28, 29].

2.1 Limitation #1: Regular, Flat Data-Parallelism
A known limitation of flat data-parallel programming models is
that they can inhibit modularity. For example, we might wish to lift
our dot-product program to the following (incorrect) matrix-vector
product, by applying dotp to each row of the input matrix:
mvmndp :: Acc (Matrix Float) → Acc (Vector Float) → Acc (Vector Float)

mvmndp mat vec =

let Z :. m :. _ = shape mat −− get extent of input matrix
in generate (Z:.m) (λrow → the $ dotp vec (slice mat (row :. All)))

Here, we use generate to create a one-dimensional vector of m
elements—the number of rows in the input matrix mat—by applying
the supplied function at each index in data-parallel. At each index,
we extract the appropriate row of the matrix using slice,3 and
pass this to our existing dotp function together with the input vec-
tor. Unfortunately, since both generate and dotp are data-parallel
operations, this definition requires nested data-parallelism and is
not permitted in flat data-parallelism.4, 5 Consequently, we cannot
reuse dotp to implement matrix-vector multiplication; instead, we
have to write it from scratch.

2That is, a program utilising the SSE/AVX instruction set extensions for x86 processors.
3The slice operation is a generalised array indexing function which is used to cut out
entire dimensions of an array. In this example, we extract All columns at one specific
row of the given two-dimensional matrix, resulting in a one-dimensional vector.
4Accelerate rejects such programs at metaprogram compilation time.
5More specifically, the problem lies with the data-parallel operation slice which
depends on the scalar argument row. The clue that this definition includes nested
data-parallelism is that in order to create a program which will be accepted by the type
checker, we must use the function (the :: Acc (Scalar a) → Exp a) to retrieve
the result of the dotp operation, effectively concealing that dotp is a collective array
computation in order to match the type expected by generate, which is that of scalar
expressions; in this instance (Exp DIM1 → Exp Float).

https://github.com/AccelerateHS/accelerate/tree/feature/sequences
https://github.com/AccelerateHS/accelerate/tree/feature/sequences

Streaming Irregular Arrays Haskell’17, September 7-8, 2017, Oxford, UK

Similarly, computations which are more naturally expressed
in nested form, such as operations over sparse or irregular data
structures, require an unwieldy encoding when restricted to only
flat data-parallelism.

2.2 Limitation #2: Memory Usage
Collection-oriented array-based programming languages like Ac-
celerate provide a convenient programming model for SIMD archi-
tectures, but are hampered by resource constraints, such as limited
main memory. This is particularly problematic for compute ac-
celerators such as GPUs, which have their own —much smaller—
high-performance memory areas separate from the host’s main
memory.6 As many collective array operations require random ac-
cess to statically unspecified index ranges, arrays must generally
be loaded into device memory in their entirety.

Where algorithmically feasible, such devices require us to split
the input into chunks, which we stream onto, process, and stream off
of the device one by one. As illustrated by the function dotpstream
in the introduction, this requires a form of nesting if we want
to maintain code portability across architectures with varying re-
source limits, while still writing high-level, declarative code.

3 Irregular Sequences
We propose the use of irregular sequences (or streams) of arrays as
a significant step towards overcoming the limitations outlined in
the previous section. An irregular sequence of arrays is an ordered
collection of arrays, where the extent—the size of an array in each
dimension—of each array within a sequence may vary. Sequences
of arrays, whose type we denote as [Array sh e] in the embedded
language, immediately provide an irregular nested data structure,
addressing the first limitation. Furthermore, we will see that se-
quences of arrays in an embedded language naturally give rise
to a notion of sequences of array computations, providing us with
greater freedom of scheduling. This freedom is required to generate
code which minimises memory use in resource-constrained target
architectures, thereby addressing the second limitation.

In the practical implementation that we use for the benchmarks,
we restrict the level of nesting to a depth of one; that is, we support
sequences of arrays, but not sequences of sequences of arrays. Pre-
vious work [24] showed that the efficient implementation of more
deeply nested irregular structures requires sophisticated runtime
support whose SIMD implementation (e.g., for GPUs) raises an
entire set of questions in its own right. However, we would like
to stress that the program transformation at the core of this work,
presented in Section 4, is free of this limitation and may be used
on programs with deeper nesting levels.7 Nevertheless, we leave
further exploration of this generalisation to future work.

Previous work [25] explored the use of regular sequences—where
the extent of all arrays in the sequence must be the same—in or-
der to address only the second of the discussed two limitations.
We substantially improve on this previous work by showing that
with irregular sequences, we can (1) simultaneously make progress
towards overcoming both limitations; and (2) address the second
limitation for a wider variety of applications. In addition to being

6The current top-of-the-line NVIDIA Quadro GP100 has 16GB of on-board memory;
much less than the amount of host memory one can expect in a workstation-class
system this product is aimed at. Most other GPUs include significantly less memory.
7Although the implementation of the core transformation supports deeper nesting
levels, our surface language can not currently express such programs.

less expressive, regular sequences come with another significant
downside: since Accelerate tracks the dimensionality of arrays at
the type level, but not their extent in each dimension, regularity is
a dynamic property of the program. Thus, supporting only regular
sequence computations compromises static program safety.

3.1 Sequences
In Accelerate, we distinguish embedded scalar computations and
embedded array computations by the type tags Exp and Acc, where
an array computation of type Acc (Array sh e) encompasses
many data-parallel scalar computations of type Exp e to produce
an array. Similarly, we use a new tag Seq to mark sequence compu-
tations; Seq [arr] represents a sequence computation comprising
many stream-parallel array computations of type Acc arr. Specifi-
cally, we consider values of type [arr] to be sequences (or streams)
of arrays, and values of type Seq seq to be sequences (or streams)
of array computations. This is an important distinction. Evaluating
a value of type Seq seq does not trigger any sequence computa-
tion, it only yields the representation of a sequence computation.
To actually trigger a sequence computation, we must consume the
sequence into an array computation to produce an array by way of:
consume :: Seq arr → Acc arr

To consume a sequence computation, we need to combine the
stream of arrays into a single array first; note how the argument
of consume takes a Seq arr and not a Seq [arr]. Depending on
the desired functionality, this can be achieved in a variety of ways.
The most common combination functions are elements, which
combines all elements of all the arrays in the sequence into one
flat vector, and tabulate, which concatenates all arrays along the
outermost dimension (trimming according to the smallest extent
along each dimension, much like multi-dimensional uniform zip):
elements :: Seq [Array sh e] → Seq (Vector e)

tabulate :: Seq [Array sh e] → Seq (Array (sh:.Int) e)

Conversely, we can produce a stream of array computations by
a function that is not unlike a one-dimensional sequence variant of
generate (we encountered the latter in the problematic mvmndp):
produce :: Exp Int → (Acc (Scalar Int) → Acc a) → Seq [a]

Its first argument determines the length of the sequence and the
second is a stream producer function that is invoked once for each
sequence element.

In addition to these operations for creating and collapsing se-
quences, we only need to be able to map over sequences with:
mapSeq :: (Acc a → Acc b) → Seq [a] → Seq [b]

to be able to elaborate the function dotpstream into sequence-based
matrix-vector multiplication:
mvmseq :: Acc (Matrix Float) → Acc (Vector Float) → Acc (Vector Float)

mvmseq mat vec =

let Z :. m :. _ = shape mat

rows = produce m (λrow → slice mat (Z :. row :. All))

in consume (elements (mapSeq (dotp vec) rows))

We stream the matrix into a sequence of its rows using produce,
apply the previously defined dot-product function dotp to each of
these rows, combine the scalar results into a vector with elements,
and finally consume that vector into a single array computation
that yields the result.

Although we are re-using Haskell’s list type constructor [] for
sequences in the embedded language, Accelerate does not actually

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

represent them in the same way. Nevertheless, the notation is justi-
fied by our ability to incrementally stream a lazy list of arrays into
a sequence of arrays for pipeline processing with:
streamIn :: [Array sh e] → Seq [Array sh e]

3.2 Irregularity
The arrays in the sequence used in the implementation of mvmseq are
all of the same size; after all, they are the individual rows of a dense
matrix. In contrast, if we use sequences to compactly represent
sparse matrices, the various sequence elements will be of varying
size, representing an irregular sequence or stream computation.

We illustrate this with the example of the multiplication of a
sparse matrix with a dense vector. We represent sparse matrices
in popular compressed sparse row (CSR) format, where each row
stores only the non-zero elements together with the corresponding
column index of each element. For example, the following matrix
is represented as follows (where indexing starts at zero):

*.
,

7.0 0 0
0 0 0
0 2.0 3.0

+/
-
⇒ [[(0, 7.0)], [], [(1, 2.0), (2, 3.0)]]

Representing our sparse matrix as a sequence of the matrix rows
in CSR format, we can define sparse-matrix vector product as:
type SparseVector a = Vector (Int, a)

type SparseMatrix a = [SparseVector a]

smvmseq :: Seq (SparseMatrix Float) → Acc (Vector Float)

→ Acc (Vector Float)

smvmseq smat vec = consume (elements (mapSeq sdotp smat))

where sdotp srow = let (ix,vs) = unzip srow

in dotp vs (gather ix vec)

When the irregularity is pronounced, we need to be careful with
scheduling; otherwise, performance will suffer. We will come back
to this issue in later sections.

3.3 Streaming
The streamIn function (Section 3) turns a Haskell list of arrays
into a sequence, or stream, of those same arrays. If that stream is
not consumed all at once, but rather one-at-a-time or in chunks of
consecutive elements, then the input list will be demanded lazily
as the stream is processed. Similarly, we have the function:
streamOut :: Seq [a] → [a]

which consumes the results of a sequence computation to pro-
duce an incrementally constructed Haskell list of the results of
the array computations contained in the sequence. This allows for
stream computations exploiting pipeline parallelism. In particular,
the production of the stream, the processing of the stream, and
the consumption of the stream can all happen concurrently and
possibly on separate processing elements.

Moreover, our support for irregularity facilitates balancing of
resources. For example, if the sequence computation is executed
on a GPU, the underlying scheduler can dynamically pick chunks
of consecutive arrays from the sequence such that it (a) exposes
sufficient work to fully utilises the considerable parallelism offered
by GPUs; while (b) ensuring that the limits imposed by the relatively
small amounts of workingmemory are not exceeded. This flexibility,
together with the option to map pipeline parallelism across multiple
CPU cores, provides the high-level declarative notation that we
sought in the introduction.

To illustrate, we have implemented the core of an audio com-
pression algorithm. The computation proceeds by, after some pre-
processing, moving a sliding window across the audio data, per-
forming the same computation at each window position. Finally,
some post-processing is performed on the results of those win-
dowed computations. As the computations at the various window
positions are independent, they may be parallelised. However, each
of the windowed computations on its own is also compute intensive
and offers ample data-parallelism. The pre- and post-processing
steps are comparatively cheap and consist of standard matrix oper-
ations, so we delegate those to an existing matrix library.8

This style of decomposition is common and well suited to a
stream processing model. We perform the preprocessing in vanilla
Haskell, stream the sequence of windowed computations through
Accelerate code, and consume the results for post-processing. In this
application, the stream is irregular, as the information density of the
audio waveform varies at different times in the audio stream, which
in turn leads to different array sizes for eachwindowed computation.
If we choose to offload the Accelerate stream computations to a
GPU, we realise a stream-processing pipeline between CPU and
GPU computations.

Although even the core of the algorithm is too long to discuss
in detail, we outline the essential structure of the computation and
how it relates to Accelerate sequences below:
type AudioData = ⟨tuple of arrays⟩

zc_stream :: AudioData → [(Matrix Double, Matrix Double)]

zc_stream audioData =

streamOut (mapSeq (processWindow audioData) windowIndexes)

where windowIndexes :: Seq [Scalar Int]

windowIndexes = produce (sizeOf audioData) id

processWindow :: AudioData → Scalar Int

→ Acc (Matrix Double, Matrix Double)

processWindow = . . .

The algorithm consists of the steps of pre-processing the audio
data, the Accelerate stream computation zc_stream, and finally
post-processing. The stream computation generates a stream of
window indexes (windowIndexes) using produce, maps the win-
dowed data processing function processWindow over that sequence
using mapSeq, and incrementally produces a list of outputs, one
per window, with streamOut. The input stream windowIndexes is
a sequence of integer values that indicate which window (subset
of the input data) the associated sequence computation ought to
extract from the input audioData. This setup is similar to the use
of produce and slice in mvmseq in Section 3.1.9

We use pipeline parallelism to overlap the stream processing per-
formed by mapSeq (processWindow audioData) with the post-
processing consuming the results of streamOut. Hence, we have
got three sources of parallelism:(1) processWindow contains con-
siderable data-parallelism; (2) the stream scheduler can runmultiple
array computations corresponding to distinct stream elements (win-
dows over the audio data) in parallel; and (3) streamOut provides
pipeline parallelism between zc_stream and post-processing. The
second source of parallelism allows the Accelerate runtime consid-
erable freedom in adapting to the resources of the target system, and
we will see in Section 7 that this is helpful in providing performance
portability between multicore CPUs and GPUs.

8https://hackage.haskell.org/package/hmatrix
9As the data in successive steps of the sliding windows strongly overlaps, this setup is
more efficient than explicitly creating a stream of windowed data.

https://hackage.haskell.org/package/hmatrix

Streaming Irregular Arrays Haskell’17, September 7-8, 2017, Oxford, UK

4 Implementing Irregular Sequence
Computations

To efficiently implement irregular sequence computations, we need
to address two requirements: (1) we need to get the irregular data-
parallelism into a formwhere it can be efficiently executed on SIMD
hardware; and (2) we need to schedule sequence computations, such
that they utilise parallelism as much as possible without exceeding
the resource constraints (such as memory limits) of the concrete
hardware. The remainder of this section is addressing the first item
by building on Blelloch and Sabot [5]’s flattening transformation—
also known as vectorisation—to statically turn irregular, nested
data-parallel code into flat data-parallel code operating on regular
structures. On the basis of this transformed code, Section 5 outlines
the dynamic scheduler addressing the second item.

Blelloch and Sabot [5]’s original version of the flattening trans-
formation was for a first-order language with built-in second-order
combinators (called NESL), which makes it a good fit for our em-
bedded array language.10 Nevertheless, the original transformation
has two severe shortcomings, which make the generated code non-
competitive: (1) it vectorises code that ought to remain as is for best
performance; and (2) it doesn’t treat the important special case of
operations on regular multi-dimensional arrays specially. We ad-
dress point (1) by adapting the work on vectorisation avoidance [20],
and tackle point (2) with a novel generalisation of vectorisation
that explicitly distinguishes between regular and irregular com-
putations, to generate efficient code for the former. Moreover, our
transformation is, in contrast to previous work, type-preserving.

4.1 Type-safe Flattening with Regularity Preservation
and Vectorisation Avoidance

As discussed in the previous section, a sequence computation of
type Seq [Array sh e] adds a second level of nested, irregular
data-parallelism on top of the flat regular parallelism of an array
computation Acc (Array sh e). Hence, we can generally regard
such a sequence computation as amapping of a flat, regular function
f over an irregular sequence xs:
mapSeq f xs :: Seq [Array sh' e']

where

f :: Acc (Array sh e) → Acc (Array sh' e')

xs :: Seq [Array sh e]

In addition to the inner-function parallelism in f, we want to exploit
as much of the intra-function parallelism of the outer mapSeq as
possible, to achieve optimal performance on a given machine. That
is, we may execute some—but not necessarily all—elements of the
mapSeq in parallel. This helps us to support out-of-core datasets on
GPUs, by only loading into device memory those elements of the
stream xs which are being processed. By dynamically adjusting the
number of elements operated on at once, we aim to minimise mem-
ory usage while keeping all processing elements fully utilised. The
flattening transformation takes the definition of the function f and
rewrites it to a definition f↑, such that semantically f↑ = mapSeq f;
in other words, f↑ can process multiple elements of the stream xs
at once, in parallel.

Preservation of regularity. Computations on regular, multidi-
mensional arrays are usually much more efficient than performing
the same computation on nested, potentially irregular structures. In

10While the host language is higher-order, the embedded language, Accelerate, is not.

other words, the mere ability to handle irregular structures presents
a significant runtime overhead, even if it is never used. Hence, it
is crucial for our variant of flattening to preserve regularity. For
example, consider the following definition of a regular parallel sum
across the innermost dimension of a two-dimensional array:
sum :: Acc (Array DIM2 Double) → Acc (Array DIM1 Double)

sum = fold (+) 0

The definition makes use of the built-in Accelerate combinator:
fold :: (Shape sh, Elt e)

⇒ (Exp e → Exp e → Exp e)

→ Exp e

→ Acc (Array (sh :. Int) e)

→ Acc (Array sh e)

Regarding the dimensionality of the input array, the shape argu-
ment of the Array type constructor gets stripped of one dimension
during the reduction; that is, the type goes from (sh :. Int) to
sh. We refer to fold as a shape-polymorphic operation [21].

Now, let us assume the stream xs is regular; that is, all arrays
in xs have the same extent. In that case, we can store multiple
elements of the stream in a single array whose dimensionality is one
greater: a chunk of arrays from the stream xs, where each array has
dimensionality n, can be represented by an array of dimensionality
n + 1. Thus, we can vectorise sum by simply changing its type:

sum↑reg :: Acc (Array DIM3 Double) → Acc (Array DIM2 Double)

sum↑reg = fold (+) 0

This is possible since fold is shape polymorphic, operating on an
array of any dimensionality greater than zero [21].

Matters get more involved in the case of an irregular stream,
where the extent of every array in xs is not known to be the same. In
that case, we can no longer represent chunks of the stream of arrays
of dimension n as an array of dimension n + 1. Instead, we need
to move to a more sophisticated representation that decomposes
the chunk of arrays into a flat data vector (containing all the array
elements) together with a segment descriptor which describes how
the individual array elements are distributed over the various arrays
in the chunk. The type for segment descriptors in Accelerate is
Segments sh which describes the structure of a chunk of arrays
of shape sh. (Its concrete representation is orthogonal to the work
presented here, so we will keep it abstract.)

On that basis, the definition of sum vectorised for processing of
an irregular stream is:

sum↑irreg :: Acc (Segments DIM2, Vector Double)

→ Acc (Segments DIM1, Vector Double)

sum↑irreg (segs, vals) =

foldseg (+) 0 vals segs

where we use an irregular variant of fold based on segment de-
scriptors which has the type:
foldseg :: (Elt a, Shape sh)

⇒ (Exp a → Exp a → Exp a)

→ Exp a

→ Acc Vector a

→ Acc (Segments (sh :. Int))

→ Acc (Segments sh, Vector a)

The implementation of foldseg is significantly more expensive
than that of fold. Moreover, maintaining and passing around of
the segment descriptors is an additional overhead. Clearly, we want
to incur this only when necessary; when the processed stream is
actually irregular.

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

Vectorisation avoidance. Even in the case of an entirely regular
computation, we need to be careful to avoid inefficiencies due to
vectorisation. As a simple example, consider this scalar function:
average :: Exp Float → Exp Float → Exp Float

average x y = (x + y) / 2

Vectorisation of this code takes each subcomputation from a scalar
operation to a vector-valued function, and replicates constants
according to the size of the argument vectors:
average↑ :: Acc (Vector Float) → Acc (Vector Float)

→ Acc (Vector Float)

average↑ xs ys =

zipWith (/) (zipWith (+) xs ys) (replicate (Z :. length xs) 2)

This code is not efficient due to the excessive array traversals and
superfluous intermediate structures. In this simple example, fusion
optimisations can improve the code, but more generally we will
arrive at better code when vectorisation directly avoids vectorising
purely scalar subexpressions, generating the following instead:

average↑avoid :: Acc (Vector Float) → Acc (Vector Float)

→ Acc (Vector Float)

average↑avoid xs ys = zipWith (λx y → (x + y) / 2) xs ys

The concrete transformation presented in the rest of this section
avoids vectorisation of purely scalar subexpressions, and preserves
regularity when vectorisation is over a regular domain.

4.2 Lifted Type Relation
Vectorisation is a type-directed transformation. Hence, we first
introduce type transformations N and V before turning to the
term transformation L. We denote both type transformations in
relational form as regular versus irregular vectorisation contexts
give us a choice between different representations. As the concrete
notation, we use Haskell’s notation for Generalised Algebraic Data
Types (GADTs) [33], as this coincides with our concrete implemen-
tation in Accelerate.

Normalisation. The first type transformation, N t tnorm, com-
putes an array normal form tnorm of an Accelerate type t. Under
this normalisation, a scalar value of type e is wrapped in a single-
ton array of type Array Z e, and a regular n-dimensional array of
regularm-dimensional arrays becomes an n +m-dimensional array.
data N t t' where

Scalar :: IsScalar e

⇒ N e (Array Z e)

Nest :: N e (Array sh e')

→ N (Array Z e) (Array sh e')

Higher :: N (Array sh e) (Array sh' e')

→ N (Array (sh:.Int) e) (Array (sh':.Int) e')

For example, a vector of vectors of Floats has type:
Array DIM1 (Array DIM1 Float)

so would be normalised to a two-dimensional array of Floats, and
is witnessed by:
Higher (Nest (Higher (Nest Scalar))) ::

N (Array (Z :. Int) (Array (Z :. Int) Float)) −− original type
(Array (Z :. Int :. Int) Float) −− normalised type

Vectorisation. The second type relation, V t tvect, takes an Accel-
erate type to its vectorised form tvect by first normalising t by way
of N t tnorm, then transforming the normalised tnorm. This last step
is ambiguous, and our reason for expressing the transformation
relationally. If the enclosing data-parallel context is regular, we

variables v ::= v0 | v1 | . . .
literals l ::= 0 | 1 | 2 | . . .
constants c ::= l | [c, c, . . .]
shapes sh ::= Z | sh : . e
tuples t ::= (e0, . . . , en)
primitive p ::= (+) | (∗) | (−) | indexInit . . .
expressions e ::= v | c | sh | t | e ! sh | p t

| (λv0 . e1) e2
| prj l e
| extent e
| generate sh (λv0 . e)
| fold (λv1 v0 . e1) e2 e3

Figure 1. The nested data-parallel core language

simply increase the dimensionality of tnorm by one. However, if the
context is irregular, we need to introduce a segment descriptor as
discussed in the previous subsection. These two cases are covered
by the alternatives Regular and Irregular:
data V t t' where

Avoid :: V t t −− avoid vectorisation
Regular :: N t (Array sh e) −− regular context

→ V t (Array (sh:.Int) e)

Irregular :: N t (Array sh e) −− irregular context
→ V t (Segments sh, Vector e)

Tuple :: (V t1 t1', V t2 t2', . . ., V tn tn')

→ V (t1, t2, . . ., tn) (t1', t2', . . ., tn')

The final case Tuple allows us to vectorise each component of a
tuple of arrays independently. This is crucial, and allows us to mix
regular, irregular, and vectorisation avoiding computations.

Vectorisation avoidance is covered by the Avoid alternative,
where we keep the type the same. Note that we do not need to
normalise the type t as it is always a scalar type; otherwise, we
wouldn’t need vectorisation avoidance at all. To determine whether
all components of a compound type use vectorisation avoidance,
we can produce a type witness for the equality between the original
and transformed types:
isAvoid :: V t t' → Maybe (t :∼: t')

isAvoid Avoid = Just Refl

isAvoid (Tuple (r1,. . .,rn))

| Just Refl ← isAvoid r1
. . .

, Just Refl ← isAvoid rn
= Just Refl

isAvoid _ = Nothing

4.3 The Lifting Transformation
To formalise the lifting transformation, we use a core language
with fewer parallel operations than Accelerate, but which is also
more general in that it supports arbitrarily nested parallel arrays.
The latter not only simplifies explanation but shows that this trans-
formation truly is an extension of similar vectorisation approaches.

The grammar of our language is shown in Figure 1. The primitive
operations of the language are a selection of the usual arithmetic op-
erations on expressions and indexInit :: sh:.Int → sh, which
strips the outermost nesting level from a shape descriptor. Expres-
sions can be variables, constants, shape descriptors, tuples,11 ar-
ray computations indexed by a shape descriptor, applications of

11We use . . . as an informal way of generalising over n-ary tuples. In practice our
encoding uses representation types for this purpose, but we elide those details as they
are orthogonal to what we present here.

Streaming Irregular Arrays Haskell’17, September 7-8, 2017, Oxford, UK

primitives or lambda abstractions, and projections on tuples. The
function extent :: Array sh e → sh returns the shape of an
array, while generate creates an array of given extent with all
elements initialised by a function mapping array indices to values.
More specialised functions, such as map, can be expressed in terms
of generate. Finally, we have fold, which is parametrised by a
scalar function and a scalar initial value.

The lifting transform L takes a term in our language and yields
a term in the same language of a V-related type that contains no
nested parallelism nor nested arrays. Its complete type is:
LJ.K :: Expr Γ t → Env Γ Γ' → (∃ t'. (V t t', Expr Γ' t'))

Here, the first argument, of type Expr Γ t, is the typed abstract
syntax (AST) of the core language term that is to be vectorised,
where Γ is a type-level list of the free variables in the term and t
is the term’s type.12 The second argument, of type Env Γ Γ', is an
environment providing a symbolic valuation for the free variables
captured in Γ. It also relates the types of the free variables in Γ to
their vectorised form Γ'. Finally, the result combines the witness
for the vectorised result type t' with the lifted term Expr Γ' t',
whose type parameters have been vectorised to match, establishing
type-preservation of the transformation.

The structure of the environment Env Γ Γ' is somewhat more
involved than usual, due to special requirements during vectorisa-
tion. Recall the fully vectorised version of the function average,
which we called average↑ (Section 4.1). It contains the subexpres-
sion replicate (Z :. length xs) 2 to produce a vector of the
constant scalar 2whose length matches that of the argument vector
xs; this constitutes the context for 2’s vectorisation. We need to
similarly replicate the value of any term that is constant within
a vectorisation context, regardless of whether it is a scalar or an
array, unless vectorisation avoidance indicates that this is not nec-
essary. In addition to the usual purpose of tracking the types of
free variables, our environment tracks both the original and vec-
torised types of free variables (the (:) alternative). Furthermore,
we track both regular ((:R)) and irregular ((:I r)) contexts. The
last two maintain the symbolic form of a term that represents the
vectorisation context, which we can use for replicate.
data Env Γ Γ' where

[] :: Env [] [] −− empty environment
(:) :: V t t' −− standard free variable

→ Env Γ Γ'
→ Env (t : Γ) (t' : Γ')

(:R) :: Expr Γ' sh −− regular vectorisation context
→ Env Γ Γ'
→ Env Γ Γ'

(:I r) :: Expr Γ' (Segments sh) −− irregular vectorisation context
→ Env Γ Γ'
→ Env Γ Γ'

The use of this environment structure can be seen in the definition
of the auxiliary function var, defined in Figure 2, which looks
up free variables in the given environment. In addition to that
conventional purpose, it also replicates the variable according to
each enclosing context; that is, while traversing the environment
to look up the variable, it inserts a replicateR and replicateI r for
every (:R) and (:I r) that it comes across, respectively.

12Just like the full implementation in Accelerate, we use a typed representation of the
core language to define a type-preserving transformation; see McDonell et al. [28] for
details on Accelerate’s design in this respect.

−− Replicate a regular variable
var :: Env Γ Γ' → Var Γ t → (∃ t. (V t t', Expr Γ' t))

var (r : _) v0 = (r, v0) −− lookup variable. . .
var (_ : env) vn+1 | (r, e) ← var env vn −− . . . in environment

= (r, weaken e)

var (sh :R env) v | (r, e) ← var env v −− regular nesting
= (r, replicateR r sh e)

var (segs :I r env) v | (r, e) ← var env v −− irregular nesting
= (r, replicateI r r segs e)

−−Add new fresh variable
weaken :: Expr Γ t → Expr (a : Γ) t

−− If a lifted expression, replicate each subarray by the size of the given shape
replicateR :: V t t' → Expr Γ sh → Expr Γ t' → Expr Γ t'

−− If a lifted expression, replicate each subarray by the size of the corresponding segment
replicateI r :: V t t' → Expr Γ sh → Expr Γ t' → Expr Γ t'

−−Get the shapes from segment descriptors
shapes :: Segments sh → Vector sh

($R) :: Expr Γ (Vector a → Array sh b)

→ Expr Γ (Array (sh:.Int) a)

→ Expr Γ (Array (sh:.Int) b)

($I r) :: Expr Γ (Vector a → (Segments sh, Vector b))

→ Expr Γ (Segments (sh:.Int), Vector a)

→ Expr Γ (Segments (sh:.Int), Vector b)

enumR :: Expr Γ sh → Expr Γ (Array (sh:.Int) sh)

enumI r :: Expr Γ (Segments sh) → Expr Γ (Segments sh, Vector sh)

−−A generalised zip for lifted scalars e0 . . .en
zipS :: (V e0 a1,. . .,V en an)

→ (e0,..,en)

→ Vector (e0,. . .,en)

Figure 2. Auxiliary functions for the lifting transformation

The main rules of the vectorisation transformation are given in
Figure 3. When it encounters a constant value, vectorisation returns
it as it is, paired with the Avoid constructor to signal that it has not
been vectorised yet. When vectorising a variable, the transforma-
tion refers to the auxiliary function var discussed previously. The
application rule defines how the context of a variable is determined
by the argument it is bound to: the transformation first vectorises
the argument, inserting the resulting V-term in the environment
of the variable.

The rules for extent returns the original expression, if vectori-
sation of its argument expression can be avoided. If the argument
expression vectorises in a regular context, extend gets vectorised
to the shape of the vectorised argument, stripped of the outermost
dimension. Otherwise the context is irregular, and the application
of extend is vectorised to be the vector of shapes stored in the
segment descriptor of the vectorised argument.

The rules for array indexing (!) are defined in terms of LF ,
which enforces vectorisation by ignoring Avoid in the vectorisation
of the term e , the first argument of the indexing operation:
LF JeK env

| (Avoid, e') ← LJeK env = (Regular, replicate envSize e')

| (r, e') ← LJeK env = (r, e')

envSize :: Env Γ Γ' → Expr Γ' Int

envSize (sh :R _) = indexLast sh

envSize (segs :I r _) = length segs

envSize (_ : env) = envSize env

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

LJcK _ = (Avoid, c)

LJvK env = var env v

LJextent eK
| (Avoid, e') ← LJeK env

= (Avoid, extent e')

| (Regular _, e') ← LJeK env

= (Avoid, indexInit (extent e'))

| (Irregular r, e') ← LJeK env

= (Regular r, shapes (prj 0 e'))

LJe ! shK
| (Avoid, sh') ← LJshK env

, (Avoid, e') ← LJeK env

= (Avoid, e' ! sh')

| (Regular Scalar, sh') ← LFJshK env

, (Regular r, e') ← LFJeK env

= (Regular r, e' !R sh')

| (Regular Scalar, sh') ← LFJshK env

, (Irregular r, e') ← LFJeK env

= (Irregular r, e' !I r sh')

LJprj l eK env

| (Tuple (..,rl ,..), e') ← LJeK env

= (rl , prj l e')

LJ(e0,. . .,en)K env

| (r0, e0') ← LJe1K env

. . .

, (rn, en') ← LJenK env

= (Tuple (r1,. . .,rn), (e0',. . .,en'))

LJp tK
| (Tuple ts, t') ← LJtK env

= (Regular Scalar

, map (λv0. p v0) (zipS ts e'))

LJgenerate sh (λv0. e)K env

| (Avoid, sh') ← LJshK env

, (r, e') ← LJeK (Avoid : env)

, Just Refl ← isAvoid r

= (r, generate sh' (λv0. e'))

| (Avoid, sh') ← LJshK env

, (Regular r, e') ← LJeK
(Regular Scalar : sh' :R env)

= (Regular (Nest r), (λv0. e') $R enumR sh')

| (Regular Scalar, sh') ← LJshK env

, (Irregular r, e') ← LFJeK
(Regular Scalar : makeSegs sh' :I r env)

= (Irregular (Nest r), (λv0. e') $I r enumI r sh')

LJ(λv0. e1) e2K env

| (r1, e2') ← LJe2K env

, (r2, e1') ← LJe1K (r1 : env)

= (r2, (λv0. e1') e2')

LJfold (λv1 v0. e1) e2 e3K env

| (Avoid, e2') ← LJe2K env

, (Avoid, e1') ← LJe1K (Avoid : env)

, (Avoid, e3') ← LJe3K env

= (Avoid, fold (λv1 v0. e1') e2' e3')

| (Avoid, e2') ← LJe2K env

, (Avoid, e1') ← LJe1K (Avoid : env)

, (Regular (Higher r), e3') ← LJe3K env

= (Regular r, fold (λv1 v0. e1') e2' e3')

| (Avoid, e2') ← LJe2K env

, (Avoid, e1') ← LJe1K (Avoid : env)

, (Irregular (Higher r), e3') ← LJe3K env

= (Irregular r

, foldseg (λv1 v0. e1') e2' e3')

Figure 3. The lifting transformation

The generate rule is one of the more interesting ones. In order
to lift the body expression of the argument function, the trans-
formation essentially implements a backtracking search. First, it
checks if vectorisation can be avoid for this expression, which is
the optimal case. If vectorisation is required, we first check if it can
be lifted into a regular computation, otherwise the expression is
lifted to an irregular computation. This backtracking in theory can
lead to exponential work complexity, but in practice there is no
deep nesting of generate-expressions. Keller et al. [20], who have
to distinguish between only two cases, circumvent backtracking by
splitting the transformation into an analysis phase which first labels
the expression, followed by a separate lifting phase; we could follow
a similar approach. With respect to the definition of Env Γ Γ', it is
worth noting how the recursive use of lifting in generate extends
the environment with regular and irregular vectorisation contexts,
which subsequently lead to the generation of the appropriate uses
of replicateR and replicateI r by var, as discussed above.

For fold, the type system ensures that the function it is applied
to is a sequential computation over scalars, and the initial value is a
scalar as well, so the transform can rely on the fact that vectorising
these two arguments is not necessary, and only has to check the
result of vectorising the third argument. As we saw in the sum
example (Section 4.1), in the first two cases the vectorised fold is
a plain fold with the dimensionality increased by one, while in
the irregular case it is transformed into the segmented reduction
operator foldseg.

5 Scheduling
We are still left with the problem of deciding how many elements of
a sequence we should compute at any one time. Madsen et al. [25]
analyse whole sequence computations and chose a static number
based on an analysis of their parallel degree. While this works for
regular computations, in the presence of irregularity, where the size
of individual elements may vary greatly, there is in general no good
fixed static size. Hence, we use a dynamic scheduling approach,
constantly adjusting the number of elements of the sequence to

execute at once. For example, consider the following sequence
computation:
consume (elements (mapSeq f (mapSeq g xs)))

Executing a step of the sequence computation consists of (1) com-
puting some chunk of the input xs; (2) apply the lifted version of g
to the chunk; (3) apply the lifted version of f to that result; and (4)
store the result. Now, suppose that g↑ achieves best performance
when processing N elements at a time, but f↑ prefers a size of 2N
for best performance. We could conceivably compute two N -sized
chunks with g↑, then combine these into a 2N -sized chunk for f↑.
However, even though the size of the chunk may be known, the
actual size of the data in each chunk (of an irregular computation)
is not. For this reason, any sort of multi-rate scheduling requires
either considerable copying of intermediates or unbounded buffers.
We avoid this issue by choosing to only adjust the chunk size after
each complete step of the sequence computation.

We have two competing considerations for determining how
many elements we should process in a step of a sequence computa-
tion: (1) we want to maximise processor utilisation, to ensure that
all processing elements are busy; and (2) minimise the amount of
time taken for each element of the sequence, which also acts as
an approximate measure to minimising overall system resource
requirements, such as memory usage. Sequence computations ini-
tially execute a single element of the sequence, then subsequently
select a chunk size for the next step based on the following strategy:

• If the overall processor utilisation (time spent executing se-
quence computations compared to the elapsed wall time) is
below a target threshold (80%), increase the chunk size.
• Once the processor is sufficiently utilised, we continue to in-
crease the chunk size only if it decreases the average time per
element. If the time per element instead increases, decrease the
chunk size. Otherwise, maintain the chunk size.

As practical considerations, our implementation uses weighted
moving averages of sampled variables, and increases the chunk size
at twice the rate that we decrease it, which reduces warm-up time
and biases towards ensuring the processors remains saturated.

Streaming Irregular Arrays Haskell’17, September 7-8, 2017, Oxford, UK

6 Optimisation
6.1 Sequence Fusion
Composing functions to build programs has advantages for clarity
and modularity. However, the naïve compilation of such programs
quickly leads to both code explosion and use of intermediate data
structures, hurting performance. Fusion, or deforestation, attempts
to remove the overhead of programming in this style by combining
adjacent transformations on data structures to remove intermediate
structures, and has been studied extensively [12, 23, 29, 39].

Similarly, it is important that we remove intermediate structures
from a sequence computation. Recall that a sequence computa-
tion of type Seq [Array sh e] consists of many stream parallel
array computations of type Acc (Array sh e). In the same way,
sequence fusion consists of two components. First, we use a variant
of stream fusion [12] in order to combine the sequence compu-
tations.13 This exposes the array computations of the sequences
to each other, allowing us to then apply an improved version of
the Accelerate array fusion system [29] to further combine the
operations, which we describe next.

6.2 Improved Array Fusion
The core idea underlying the existing Accelerate array fusion sys-
tem [29] is well known: simply represent an array by its size and
a function mapping array indices to their corresponding values.
Fusion then becomes an automatic property of the data represen-
tation. This method has been used successfully to optimise purely
functional array programs in Repa [21, 23], although the idea of
representing arrays as functions is well known [10, 15, 18].

However, a straightforward implementation of this approach
results in a loss of sharing, which was a problem in early versions
of Repa [23]. For example, consider the following program:14

let xs = use (Array . . .)

ys1 = map f xs

in zipWith g ys1 ys1

Every access to an element ys will apply the (arbitrarily expensive)
function f to the corresponding element in xs. It follows that these
computations will be done at least twice, once for each argument
in g, quite contrary to the programmer’s intent. In the standard
Accelerate fusion system, the solution to this problem is to not fuse
terms, such as ys, whose results are used more than once.

However, this approach does not take into account what the
term ys actually is; it simply sees that ys occurs twice in zipWith
and so refuses to fuse it further. Consider the following example:
let xs = use (Array . . .)

ys2 = (map f1 xs, map f2 xs)

in zipWith g2 (fst ys2) (snd ys2)

Although the term ys2 still occurs twice in the zipWith, we can
see that the individual components of the tuple each occur only
once, and thus should still be subject to fusion.

This lack of fusion in the regular Accelerate optimisation sys-
tem is particularly problematic for us, since we represent irregular
sequences as a pair consisting of the segment descriptor together
with a vector of the array values. Thus, in the standard Accelerate

13One of the complexities of general fusion transformations, including stream fusion,
is needing handle filtering operations, where the size of the result structure depends
on the values of the input structure, as well as its size. Our sequences do not support
dropping (or skipping) elements of the stream, so we do not need to consider it here.
14The operator use lifts a regular Haskell array into an embedded language array.

system, irregular sequences would never fuse, severely impacting
performance. We extend the Accelerate fusion system in order to
fuse the individual components of a tuple independently, which
improves the performance of both our sequence computations as
well as regular Accelerate programs.

The solution is to be more precise with what constitutes the use
of a variable in a term, for variables binding tuples. Rather than
counting only how many times the variable occurs in a term, we
must keep track of how often each component of the tuple that
variable references is accessed. In the above example, we would
then see that the first and second components of the binding ys2
are each only accessed once, thus fulfilling our criteria that the
terms should be fused.

At a more interesting example, consider the following where
only some of the components of the bound tuple expression should
be fused into the body expression:
let xs = use (Array . . .)

ys3 = (map f1 xs, (generate sh f3, scanl (+) 0 xs))

in (zipWith g2 (fst ys3) (fst (snd ys3))

, zipWith g3 (fst ys3) (snd (snd ys3)))

Here, the result of map is used twice, so is not considered for fusion,
while the generate and scanl results are each used only once. As
scanl is not an element-wise operation it can not be fused into its
use site [29], leaving us with only generate. In our new system,
for each sub-component of a tuple which should be fused, we split
it out of the original expression into its own let-binding, which
then allows the existing fusion system to handle it.

7 Evaluation
The objective of this work is to improve the expressive power of
a flat data-parallel array language with the introduction of irregu-
lar structures and a limited form of nested parallelism. However,
we would also like that this extra expressiveness imposes only a
reasonable cost on performance. We evaluate the work through a
series of benchmarks, which are summarised in Table 1.

Benchmarks were conducted using a single Tesla K40c GPU
(compute capability 3.5, 15 multiprocessors = 2880 cores at 750MHz,
11GB RAM) backed by two 12-core Xeon E5-2670v3 CPUs (64-bit,
2.3GHz, 32GBRAM, hyperthreading is enabled) runningGNU/Linux
(Ubuntu 14.04 LTS). We used GHC-8.0.2, LLVM-4.0.0, and NVCC-
8.0.44. Haskell programs are run with RTS options to set thread
affinity and match the allocation size to the processor cache size.15
We use numactl to pin threads to the physical CPU cores. Times
are measured using criterion16 via linear regression.

7.1 Sparse-Matrix Vector Multiplication (SMVM)
SMVM multiplies a sparse general matrix in CSR format [9] with a
dense vector. Table 2 compares Accelerate to the Intel Math Kernel
Library17 (MKL v11.3.2, mkl_cspblas_dcsrgemv) on the CPU, and
NVIDIA cuSPARSE18 (v8.0, cusparseDcsrmv) on the GPU. Test
matrices are derived from a variety of application domains [14]
and are available online.19 Matrices use double precision values
and 32-bit integer indices. GPU implementations do not include
host/device data transfer time.

15+RTS -qa -A30M -Nn
16http://hackage.haskell.org/package/criterion
17https://software.intel.com/en-us/intel-mkl
18https://developer.nvidia.com/cusparse
19http://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html

http://hackage.haskell.org/package/criterion
https://software.intel.com/en-us/intel-mkl
https://developer.nvidia.com/cusparse
http://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

Accelerate
Name Input Size Competitor Accelerate +Sequences

SMVM (Queen_4147) 330M 62.0 (MKL) 74.3 (120%) 80.1 (129%)
Audio processor (continuous) 2.10 (C) 4.29 (204%) 3.69 (176%)
MD5 Hash 14M 49.9 (Hashcat) 92.0 (184%) 435.0 (872%)
PageRank 130M 5840 (Repa) 1767 (30%) 3059 (52%)

Table 1. Benchmark summary. Execution times in milliseconds.

Non-zeros Competitor Accelerate Accelerate+Sequences

Name (nnz/row) N=1 N=12 N=24 GPU N=1 N=12 N=24 GPU N=1 N=12 N=24 GPU

pdb1HYS 4.3M (119) 2.09 28.36 47.90 21.61 1.84 13.31 15.72 7.96 1.66 7.89 7.31 0.96
consph 6.0M (72) 2.11 20.72 26.38 15.44 1.93 11.84 7.37 7.79 1.60 6.75 4.34 1.18
cant 4.0M (64) 2.18 30.77 52.21 13.99 1.98 14.43 16.29 7.12 1.61 7.05 6.46 0.80
pwtk 11.6M (53) 2.07 5.41 17.21 13.20 1.91 9.33 4.68 8.36 1.61 6.51 3.77 2.06
rma10 2.4M (50) 2.70 20.48 38.60 13.31 2.06 8.84 10.10 5.68 1.63 4.75 4.49 0.54
shipsec1 7.8M (55) 2.06 13.72 17.66 12.23 1.93 10.42 5.09 7.91 1.21 6.78 3.76 1.52
rail4284 11.3M (10) 1.06 3.68 5.10 7.08 1.01 1.90 3.30 4.58 0.72 1.58 2.83 1.63
TSOPF_FS_b300_c2 8.8M (154) 2.04 5.47 6.57 8.47 1.70 4.28 2.88 5.27 1.64 3.78 2.55 1.46
FullChip 26.6M (9) 0.97 1.96 3.36 0.10 1.18 2.58 1.90 0.32 0.65 1.70 1.43 0.26
dielFilterV2real 48.5M (42) 1.40 4.31 8.06 14.50 1.75 8.37 4.50 7.89 1.45 6.22 3.97 4.26
Flan_1565 117.4M (75) 1.49 4.86 8.40 22.43 1.97 11.79 5.00 9.36 1.69 9.27 4.62 5.69
Queen_4147 329.5M (80) 1.78 9.07 9.71 23.00 1.45 8.20 5.85 9.02 1.31 8.56 5.79 6.35
nlpkkt240 774.5M (28) 1.51 6.90 6.27 16.88 1.40 6.28 7.00 7.02 1.15 5.82 7.19 5.17
HV15R 283.0M (140) 1.50 10.66 10.58 22.45 1.38 6.85 10.93 9.75 1.46 11.12 13.30 6.85

Table 2. Overview of sparse matrices tested and results of the benchmark. Measurements in GFLOPS/s (higher is better). Columns labelled
N=n are CPU implementations using n threads. Competitor implementations are Intel MKL on the CPU and NVIDIA cuSPARSE on the GPU.

In a balanced machine, SMVM should be limited by memory
bandwidth. Accelerate is at a disadvantage in this regard, since
MKL and cuSPARSE require some pre-processing to construct the
segment descriptor, which is not included in their timing results.
Our sequences implementation has some additional bookkeeping
work over standard Accelerate in order to track sequence chunks,
further reducing overall throughput, particularly on small matrices.

Figure 4 shows the strong scaling when computing the sparse-
matrix multiply of the Queen_4147 dataset on the CPU. The work
in this paper achieves 77% the performance of the highly-tuned
reference implementation (or a 15% slowdown compared to the
base Accelerate implementation).

7.2 Audio Processor
The audio processing benchmark tests the algorithm described
in Section 3.3, computing the zc_stream part of the algorithm
which processes the input audio data along a sliding window. Since
standard Accelerate is limited to flat data parallelism only, it can
only take advantage of a single source of parallelism, and applies
the processWindow operation to a single element of the stream
at a time. However, with sequences, we can also take advantage
of another source of parallelism and process multiple windowed
elements at a time.

Figure 5 shows the strong scaling performance compared to
the implementation in regular Accelerate on the CPU.20 As the
number of cores increases, the performance of the vanilla Accelerate
implementation begins to drop off as there is no longer enough

20Unfortunately we do not have a parallel reference implementation of the algorithm
to compare to.

work in a single window to saturate all processors. On the other
hand, the sequences implementation is able to process multiple
windowed elements at a time in order to keep all the cores busy,
resulting in a speedup over regular Accelerate of 16% on the CPU
(at 24 threads), and 13% on the GPU.

7.3 MD5 Hash
The MD5 message-digest algorithm [35] is a cryptographic hash
function producing a 128-bit hash value. The MD5 benchmark
attempts to find the plain text of an unknown hash via a standard
dictionary attack using a database of 14 million known plain texts.
We compare to Hashcat,21 the self-proclaimed world’s fastest CPU-
based password recovery tool. Results from Hashcat are as reported
by its inbuilt benchmark mode.

Hashcat achieves a maximum throughput of 287 million hashes
per second (MH/sec), compared to vanilla Accelerate at 155 MH/s
and our sequences implementation at 46 MH/sec. One key dif-
ference between our sequences version is that we stream in and
process small chunks of the input dictionary at a time, rather than
loading the entire database into memory at once. However, our
runtime system currently does not overlap computation with pre-
loading the next chunk of input into memory, which would help
close this performance gap. Figure 6 shows the strong scaling per-
formance.

7.4 PageRank
PageRank [30] is a link analysis algorithm which estimates the
relative importance of each element of a linked set of documents.
21https://hashcat.net/hashcat/

https://hashcat.net/hashcat/

Streaming Irregular Arrays Haskell’17, September 7-8, 2017, Oxford, UK

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

S
p

e
e

d
u

p
 v

s
.

M
K

L
 @

 1
 T

h
re

a
d

Threads

Intel MKL
Accelerate

Accelerate + Sequences

Figure 4. SMVM of Queen_4147 dataset

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25

S
p

e
e

d
u

p
 v

s
.

A
c
c
e

le
ra

te
 @

 1
 T

h
re

a
d

Threads

Accelerate
Accelerate + Sequences

Figure 5. Audio processor

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25

S
p

e
e

d
u

p
 v

s
.

H
a

s
h

c
a

t
@

 1
 T

h
re

a
d

Threads

Hashcat
Accelerate

Accelerate + Sequences

Figure 6.MD5 hash recovery

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

S
p

e
e

d
u

p
 v

s
.

R
e

p
a

 @
 1

 T
h

re
a

d

Threads

Repa
Accelerate

Accelerate + Sequences

Figure 7. PageRank analysis of Wikipedia (English)

As input we use a link graph of Wikipedia (English) consisting
of 5.7 million pages and 130 million links. Figure 7 compares the
performance against an implementation written in Repa [21, 23],
a data-parallel array programming language similar to Accelerate.
Both Accelerate and Repa represent the link graph as index pairs
(Int,Int). While this representation is not as space efficient as an
adjacency list, it is the one typically chosen for this algorithm as it
is more suitable for parallelism.

8 Related Work
While there are a number of domain specific languages to support
GPU programming [3, 11, 16, 22, 27, 36], none of them currently
support both parallel arrays as well as streams.

A number of languages aim at facilitating GPU programming in
the presence of data streams. Brook [6] is a stream programming
extension to C with support for data parallel computations on the
CPU. BrookGPU [7] implements a subset of this language on the
GPU. Sponge [19] is a compilation framework for GPUs using the
synchronous data flow streaming language StreamIt [38].

Both Sponge and BrookGPU are based on a very different pro-
gramming model to our work. In Sponge and BrookGPU, the stream
is the only parallel data-structure available, and the compiler is re-
sponsible for transforming this into code suitable for the GPU. In
contrast, we provide both parallel arrays as well as streams. As ar-
rays support a wider range of data-parallel operations than streams,
this distinction allows the programmer to design for the strengths
of each structure while still providing a high level of abstraction.

Proteus [13] uses an idea related to chunking to restrict the mem-
ory requirements of vectorisation-based [5] nested data-parallelism.
Palmer et al. [31] tackle this problem by partially serialising the
flattened program into smaller pieces to be executed sequentially.
This is similar in spirit to our work, but aimed as an automatic com-
piler transformation, rather than being explicit in the language, as
we have chosen to do. Our work also distinguishes between regular
and irregular computations, which neither of these consider.

As mentioned in Section 4, our transformation implements a
variant of vectorisation avoidance [20], which first appeared in Data
Parallel Haskell (DPH) [32]. In contrast to DPH, our language is

Haskell’17, September 7-8, 2017, Oxford, UK R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller

first order and we do not support arbitrary nesting of irregular com-
putations. On the other hand, we extend vectorisation avoidance
to distinguish between not only scalar and parallel subcomputa-
tions, but to also consider computations which are guaranteed to
be regular and those which may be irregular.

Manticore [17] a dialect of ML for NESL-style parallelism on
CPUs. Manticore flattens nested data structures [2], but does not
need to flatten nested computations, as their runtime uses a fork-join
execution model, rather than the SIMD flat data-parallel execution
model we use.

Nesl/GPU [3] compiles NESL [4] code to CUDA, a system which
was independently developed as CuNesl [40]. Performance suffers
because the implementations rely on the legacy NESL compiler,
which produces a significant number of intermediate computations.
Like our work, NESL is a first-order language, but unlike our work
supports arbitrary nested parallelism, which we have chosen to
instead restrict to a single level of nesting. Their work also does
not tackle the problem of space usage in flattened programs, which
we address with sequences.

A model for streaming NESL was introduced by Madsen and
Filinski [26], motivated by the lack of a space cost model, and
is conceptually similar to sequences in Accelerate. Their work is
more general than ours in the sense that it allows nested sequences,
however it has yet to be implemented into a high-performance
compiler. Furthermore, we consider a larger range of operations
on, and generalise to, multi-dimensional arrays.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). http://tensorflow.org/

[2] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and
Adam Shaw. 2013. Data-Only Flattening for Nested Data Parallelism. In PPoPP’13:
Principles and Practice of Parallel Programming. ACM, 81–92.

[3] Lars Bergstrom and John Reppy. 2012. Nested data-parallelism on the GPU. In
ICFP: International Conference on Functional Programming. ACM.

[4] Guy E. Blelloch. 1995. NESL: A Nested Data-Parallel Language. Technical Report
CMU-CS-95-170. Carnegie Mellon University.

[5] Guy E Blelloch and GaryW Sabot. 1988. Compiling collection-oriented languages
onto massively parallel computers. In Symposium on the Frontiers of Massively
Parallel Computation. IEEE, 575–585.

[6] I Buck. 2003. Brook Language Specification. Outubro (2003). http://merrimac.
stanford.edu/brook

[7] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. 2004. Brook for GPUs: Stream Computing on
Graphics Hardware. In SIGGRAPH Papers. ACM, 777–786.

[8] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. 2011. Accelerating Haskell array codes with multicore GPUs. In
DAMP: Declarative Aspects of Multicore Programming. ACM, 3–14.

[9] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. 1990. Scan primitives
for vector computers. In Supercomputing. IEEE, 666–675.

[10] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. 2012. Expressive array con-
structs in an embedded GPU kernel programming language. InDAMP: Declarative
Aspects and Applications of Multicore Programming. ACM.

[11] Koen Claessen, Mary Sheeran, and Joel Svensson. 2008. Obsidian: GPU program-
ming in Haskell. In IFL: Implementation and Application of Functional Languages.

[12] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream fusion from
lists to streams to nothing at all. In ICFP: International Conference on Functional
Programming. ACM.

[13] Jan Prins Daniel Palmer and StephenWestfold. 1995. Work-Efficient Nested Data-
Parallelism. In Proceedings of the Fifth Symposium on the Frontiers of Massively
Parallel Processing (Frontiers 95). IEEE.

[14] Tim A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Software 38, 1 (2011), 1–25. http://www.cise.ufl.
edu/research/sparse/matrices

[15] Conal Elliott. 2003. Functional Images. In The Fun of Programming. Palgrave.
[16] Conal Elliott. 2004. Programming Graphics Processors Functionally. In Haskell

Workshop. ACM.
[17] Matthew Fluet, Nic Ford, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao.

2007. Status Report: The Manticore Project. In ML’07: Workshop on ML. ACM,
15–24.

[18] Leo J Guibas and Douglas K Wyatt. 1978. Compilation and Delayed Evaluation
in APL. In POPL ’78: Principles of Programming Languages. 1–8.

[19] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke.
2011. Sponge: Portable Stream Programming on Graphics Engines. SIGARCH:
Computer Architecture News 39, 1 (March 2011), 381–392.

[20] Gabriele Keller, Manuel MT Chakravarty, Roman Leshchinskiy, Ben Lippmeier,
and Simon Peyton Jones. 2012. Vectorisation avoidance. In ACM SIGPLAN Notices,
Vol. 47. ACM, 37–48.

[21] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton
Jones, and Ben Lippmeier. 2010. Regular, Shape-polymorphic, Parallel Arrays
in Haskell. In ICFP: International Conference on Functional Programming. ACM,
261–272.

[22] Bradford Larsen. 2011. Simple optimizations for an applicative array language
for graphics processors. In DAMP: Declarative Aspects of Multicore Programming.

[23] Ben Lippmeier, Manuel Chakravarty, Gabriele Keller, and Simon Peyton Jones.
2012. Guiding parallel array fusion with indexed types. In Haskell Symposium.
ACM, 25–36.

[24] Ben Lippmeier, Manuel M T Chakravarty, Gabriele Keller, Roman Leshchinskiy,
and Simon Peyton Jones. 2012. Work Efficient Higher-Order Vectorisation. In
ICFP’12: International Conference on Functional Programming. ACM, 259–270.

[25] Frederik M. Madsen, Robert Clifton-Everest, Manuel M. T. Chakravarty, and
Gabriele Keller. 2015. Functional Array Streams. In FHPC’15: Workshop on Func-
tional High-Performance Computing. ACM, 23–34.

[26] Frederik M. Madsen and Andrzej Filinski. 2013. Towards a Streaming Model for
Nested Data Parallelism. In FHPC’13: Workshop on Functional High-performance
Computing. ACM, 13–24.

[27] Geoffrey Mainland and Greg Morrisett. 2010. Nikola: Embedding Compiled GPU
Functions in Haskell. In Haskell Symposium. ACM.

[28] Trevor L. McDonell, Manuel M T Chakravarty, Vinod Grover, and Ryan R Newton.
2015. Type-safe Runtime Code Generation: Accelerate to LLVM. In Haskell ’15:
Symposium on Haskell. ACM, 201–212.

[29] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lipp-
meier. 2013. Optimising Purely Functional GPU Programs. In ICFP: International
Conference on Functional Programming. 49–60.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. (1999).

[31] Daniel W. Palmer, Jan F. Prins, Siddhartha Chatterjee, and Rickard E. Faith. 1996.
Piecewise execution of nested data-parallel programs. In Languages and Compilers
for Parallel Computing. Springer Heidelberg, 346–361.

[32] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M T
Chakravarty. 2008. Harnessing theMulticores: Nested Data Parallelism in Haskell.
In Foundations of Software Technology and Theoretical Computer Science.

[33] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. 2006. Simple unification-based type inference for GADTs. In ICFP’06:
International Conference on Functional Programming. 50–61.

[34] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
In PLDI’13: Programming Language Design and Implementation. ACM.

[35] Ronald Rivest. 1992. The MD5 message-digest algorithm. (1992).
[36] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic,

HyoukJoong Lee, Martin Odersky, and Kunle Olukotun. 2013. Optimizing Data
Structures in High-Level Programs: New Directions for Extensible Compilers
based on Staging. In POPL’13: Principles of Programming Languages. ACM.

[37] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. 2007. Scan
primitives for GPU computing. In Symposium on Graphics Hardware. Eurograph-
ics Association, 97–106.

[38] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. StreamIt: A
language for streaming applications. In Compiler Construction. Springer.

[39] Philip Wadler. 1990. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science 73, 2 (June 1990), 231–248.

[40] Yongpeng Zhang and F Mueller. 2012. CuNesl: Compiling Nested Data-Parallel
Languages for SIMTArchitectures. In ICPP ’12: International Conference on Parallel
Processing. 340–349.

http://tensorflow.org/
http://merrimac.stanford.edu/brook
http://merrimac.stanford.edu/brook
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

	Abstract
	1 Introduction
	2 Background: Accelerate
	2.1 Limitation #1: Regular, Flat Data-Parallelism
	2.2 Limitation #2: Memory Usage

	3 Irregular Sequences
	3.1 Sequences
	3.2 Irregularity
	3.3 Streaming

	4 Implementing Irregular Sequence Computations
	4.1 Type-safe Flattening with Regularity Preservation and Vectorisation Avoidance
	4.2 Lifted Type Relation
	4.3 The Lifting Transformation

	5 Scheduling
	6 Optimisation
	6.1 Sequence Fusion
	6.2 Improved Array Fusion

	7 Evaluation
	7.1 Sparse-Matrix Vector Multiplication (SMVM)
	7.2 Audio Processor
	7.3 MD5 Hash
	7.4 PageRank

	8 Related Work
	References

