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Abstract
Embedded languages are often compiled at application runtime;
thus, embedded compile-time errors become application runtime
errors. We argue that advanced type system features, such as
GADTs and type families, play a crucial role in minimising such
runtime errors. Specifically, a rigorous type discipline reduces run-
time errors due to bugs in both embedded language applications
and the implementation of the embedded language compiler itself.

In this paper, we focus on the safety guarantees achieved by
type preserving compilation. We discuss the compilation pipeline
of Accelerate, a high-performance array language targeting both
multicore CPUs and GPUs, where we are able to preserve types
from the source language down to a low-level register language in
SSA form. Specifically, we demonstrate the practicability of our
approach by creating a new type-safe interface to the industrial-
strength LLVM compiler infrastructure, which we used to build two
new Accelerate backends that show competitive runtimes on a set
of benchmarks across both CPUs and GPUs.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Code generation

Keywords Arrays; Data Parallelism; Embedded Language; Code
Generation; Dynamic Compilation; GPGPU; Haskell; LLVM

1. Introduction
Compiling a source language via a typed intermediate language has
compelling advantages over a conventional untyped compiler. Car-
rying types can enable optimisations, and it also helps ensure com-
piler correctness [20, 33, 45]. An optimising compiler for a high-
level language makes many passes over a single source program,
performing sophisticated and error-prone transformations—many
compiler bugs can be caught by type checking the intermediate lan-
guage after each transformation.

Several practical compilers today, including the Glasgow Haskell
Compiler (GHC), carry types through most or all of their compi-
lation pipeline. These types, however, are represented at the value
level inside the compiler. That is, the compiler’s abstract syntax

datatypes would include data constructors to distinguish, say, inte-
gers from floating-point numbers, such as:

data Type = Int | Float | · · ·
data Exp = Let (Var,Type,Exp) Exp | · · ·

This approach has several drawbacks: (1) as the program progresses
through the various compiler transformations, the value-level types
must be carefully manipulated to remain in sync with the terms they
annotate and (2) errors are only detected when the type checker or
verifier is run over the intermediate representation,1 which amounts
to testing the compiler for a given user program, not verifying that
the compiler preserves well-typedness in the intermediate language
on all possible inputs. Thus, bugs can lurk undetected [11, 48].

In Haskell, GADTs can be used to add a type level index to an
expression syntax tree—defining Exp t, rather than just Exp, to de-
note that evaluating the expression yields a value of type t, which
is checked during compilation. In fact, this is the canonical exam-
ple of how and why to use a GADT in Haskell. However, scaling
this technique up to a realistic language presents considerable chal-
lenges, and fully deploying the technique requires a full type-level
representation of the binding structure. Indeed, Accelerate [9, 32]
is the only example of a released compiler with users that employs
this technique, of which we are aware.

Unfortunately, a statically typed representation of terms is not
always enough. Code generation—the point where C, assembly,
or bytecode is emitted, often by appending strings together—is
another area where type-preservation is typically lost.

Of course, heavy-weight verification and proof-carrying-code
mechanisms can address these issues [25, 27], but they require a
vastly larger amount of effort. Moreover, these techniques have not
yet been scaled to high performance and parallelising compilers,
which are the target of our work.

On the other hand, a small number of popular compilers, such as
Clang/LLVM and GCC, are debugged by the sheer force of many
users. However, for young languages—such as Swift, Idris, Julia,
or Rust—this approach is simply not feasible, and embedded or
domain specific languages provide an especially extreme case of
many new compilers with small user bases. Our experience has
shown that most parallelisation-oriented DSLs developed over the
last several years are neither robust nor complete. We argue that
new compilers for embedded languages deserve more effort to
establish their correctness, even if for performance an unverified—
but widely-used—backend such as LLVM, C, or CUDA must be
part of the trusted code base.

Can you trust your compiler? GADT techniques are most read-
ily applicable to embedded languages because type-level informa-

1 In the case of GHC, this is only done while running GHC’s regression
test suite. CoreLint (GHC’s internal type checker) is switched off during
production use due to performance considerations.



tion is acquired “for free” from the host language type checker.
Yet, there remains the problem of maintaining this type-level infor-
mation throughout the entire compilation pipeline: from the source
program, through the optimisation stages, and finally to code gen-
eration. Our previous work dealt with the type-safe translation of
source programs from higher-order abstract syntax into a typed de
Bruijn representation [32], but from there the translation into opti-
mised CUDA code was untyped.

To that end, this paper presents our approach to bringing static
types to all stages of the Accelerate compiler. We present our (pre-
viously undiscussed) GADT-based representation of richly-typed
terms and the type-preserving aspects of our optimisation pipeline,
as well as a new type-safe interface to LLVM code generation, for
use by any Haskell-based compiler. We use this interface to LLVM
to build a family of backends for the Accelerate compiler [9, 32],
resulting in complete type-preservation from source to code genera-
tion, and targeting either CPUs or GPUs, compiling through LLVM
to x86[ 64] and PTX, respectively.

We argue that using GADTs and the Haskell type system as a
light-weight verification system results in a sweet-spot that offers
high confidence in compiler correctness relative to the amount of
engineering effort required. In this method we trust the widely
used LLVM compiler, but we verify type preservation for 100%
of the (much less widely used) Accelerate compiler. While these
are two very different methods of assurance, we find this to be a
good combination.

We make the following contributions:

• We describe a series of static type-preserving transformations
and optimisations—including mapping type representations,
fusion, and code skeleton generation—from a parallel source
program through to type-preserving generation of LLVM IR.

• We present a new backend framework for the Accelerate em-
bedded language, based on those transformations, which we use
to targets both multicore CPUs and GPUs. To our knowledge,
this is the first implementation of a practical embedded lan-
guage that preserves all static type information from the source
program to a low-level target language.

• We evaluate the performance of the new backends to validate
that we have not sacrificed performance for safety in this effort.

This paper expands our existing work on the embedded lan-
guage Accelerate [9, 32]. The source code is available from http:
//github.com/AccelerateHS/accelerate-llvm.

2. Background: Accelerate
Accelerate is a parallel language consisting of a carefully selected
set of operations on multidimensional arrays that can be compiled
efficiently to bulk-parallel SIMD hardware. Accelerate is embed-
ded in Haskell, meaning that we write Accelerate programs using
(slightly stylised) Haskell syntax. Accelerate code embedded into
Haskell is not compiled to parallel SIMD code by the Haskell com-
piler; instead, the Accelerate library includes a runtime compiler
that generates parallel SIMD code at application runtime. Acceler-
ate is stratified into collective array computations, represented by
terms of the type Acc a, where a is the type of the value produced
by evaluating the expression, and scalar expressions, wrapped in
the type constructor Exp. Collective operations comprise many
scalar operations that are executed in parallel, but scalar opera-
tions cannot initiate new collective operations. This stratification
statically excludes nested, irregular parallelism, which helps en-
sure efficient execution on constrained hardware such as GPUs, as
discussed in our previous work [9].

Overall, the collective operations in Accelerate are based on
the scan-vector model [10, 42], and consist of multidimensional
variants of familiar Haskell list operations such as map and fold,
as well as array-specific operations such as index permutations. For
example, to compute a vector dot product, we write:

dotp :: Num a ) Vector a ! Vector a
! Acc (Scalar a)

dotp xs ys =
let xs' = use xs

ys' = use ys
in fold (+) 0 ( zipWith (*) xs' ys' )

The function dotp consumes two one-dimensional arrays (Vector)
of values, and produces a single (Scalar) result as output. As the
return type is wrapped in the type Acc, we see that it is an em-
bedded Accelerate computation—it will be evaluated in the object
language of dynamically generated parallel code, rather than the
meta language, which is vanilla Haskell.

The arguments to dotp are plain Haskell arrays. To make these
arguments available to Accelerate computations, they must be em-
bedded with the use function, which is overloaded so that it can
accept tuples of arrays:

use :: Arrays a ) a ! Acc a

The above Haskell code is more concise than an explicitly GPU-
accelerated or SIMD vectorized2 low-level dot product, but it is cru-
cial to employ aggressive fusion [13, 32] to eliminate intermediate
data structures, which would otherwise ruin performance.

As a second example, the code in Figure 1 computes a single
round of the MD5 cryptographic hash function for a 512-bit input.
The input is a two-dimensional array of words, with one word per
column and padding (to 64 bytes) to keep the array regular. The
hash computation is applied in data-parallel to all words in the in-
put. Note that md5Round uses the host language Haskell as a meta
language to programatically generate a single large expression in
the object-language Accelerate. The meta program even includes
such gratuitousness as list indexing (!!), operations that would ruin
performance if we would try to compile them to parallel SIMD
code. However, by taking advantage of Accelerate’s runtime com-
pilation, the Haskell meta program can generate an efficient Accel-
erate computation: embedding the various constant values directly
into the generated program, and using foldl—from Haskell’s stan-
dard prelude—to completely unroll the loops of the object code
implementing the MD5 hash function.

This code clearly demonstrates the value of runtime code gen-
eration for embedded languages. Nevertheless, it also opens the
door for runtime failures that users would expect were weeded out
at compile time. In fact, many embedded array languages in less
strongly typed languages explicitly allow the runtime compiler to
be a partial function, falling back to interpreted sequential execu-
tion if it fails at runtime to generate parallel code [5, 22]. We would
instead prefer static assurances at meta-program (Haskell) compile
time. By typing embedded programs using the type system of the
host language and guaranteeing that we preserve that type infor-
mation through the entire compilation process down to low-level
register code, we minimise the likelihood of such failures without
compromising performance.

2.1 The Problem with Accelerate Backends
Although Accelerate was designed with support for multiple ar-
chitectures in mind—such as CPUs, GPUs, and even FPGAs—so
far, only two complete backends have materialised: the interpreter,

2 We use the term “vectorized” to refer to a program that utilises the
SSE/AVX instruction set extensions for x86 processors.

http://github.com/AccelerateHS/accelerate-llvm
http://github.com/AccelerateHS/accelerate-llvm


md5Round :: Acc (Array DIM2 Word32)
! Exp Int
! Exp (Word32,Word32,Word32,Word32)

md5Round knows unknown =
lift $ foldl step (a0,b0,c0,d0) [0..64]
where
step (a,b,c,d) i

| i < 16 = shfl ((b .&. c) . |.
((complement b) .&. d))

| i < 32 = shfl ((b .&. d) . |.
(c .&. (complement d)))

| i < 48 = shfl (b �xor� c �xor� d)
| i < 64 = shfl (c �xor�

(b . |. (complement d)))
| otherwise = (a+a0,b+b0,c+c0,d+d0)
where
shfl f = (d, b + ((a + f + k i + get i)

�rotateL� r i), b, c)

a0, b0, c0, d0 :: Exp Word32
a0 = · · · �� constants

get :: Int ! Exp Word32
get i

| i < 16 = get32le i
| i < 32 = get32le ((5*i + 1) �rem� 16)
| i < 48 = get32le ((3*i + 5) �rem� 16)
| otherwise = get32le ((7*i) �rem� 16)

get32le :: Int ! Exp Word32
get32le i = knows A.! index2 (constant i) unknown

k :: Int ! Exp Word32
k i = constant (ks !! i)
where

ks :: [Word32]
ks = [ · · · ] �� constants

r :: Int ! Exp Int
r i = constant (rs !! i)
where

rs :: [Int]
rs = [ · · · ] �� constants

Figure 1. MD5 cryptographic hash computation in Accelerate

which only serves as a reference implementation for the semantics
of the language, and the CUDA backend targeting GPUs [9, 32].
However, this is not from a lack of interest. Indeed, there exists
no fewer than six incomplete or abandoned Accelerate backends,
targeting ArBB [43], Repa,3 OpenCL,45 and C.5,6

In a sense this is not surprising: writing high-performance com-
pilers is difficult and time consuming, and it is often the parts of
the compiler that fail to preserve static type information that are the
hardest to get right. For example, the code generator of the original
CUDA backend has been a large source of errors—we conjecture
that many of these could have been avoided if the translation had
preserved static types.7

This work addresses these problems by demonstrating how
to preserve static type information through the entire compile
pipeline, from source program through optimisations and code
generation (§4–6); and by creating a set of reusable components
for building Accelerate backends, decreasing the cost of construct-
ing and maintaining backends, while sharing the type-safety bene-
fits (§7).

3. Background: LLVM
Compiler backends and code generators are complex beasts, espe-
cially if they include advanced code optimisations and target mul-
tiple architectures. As a wide range of code optimisation and code
generation techniques are largely independent of the specifics of
the implemented source language and the corresponding compiler
frontend, it is very attractive to reuse and share complex backend
code. LLVM is probably the most popular and widely used set of li-
braries and tools to facilitate such backend reuse. It is applied well

3 https://github.com/blambo/accelerate-repa
4 https://github.com/HIPERFIT/accelerate-opencl/
5 https://github.com/AccelerateHS/accelerate-backend-kit/
tree/master/icc-opencl
6 https://github.com/AccelerateHS/accelerate-c
7 Example GitHub issues stemming from a lack of type preservation: 37,
45, 50, 57, 66, 79, 91, 93, 114, 124, and 168, not to mention the many bugs
that we ourselves found before release.

beyond its original target—the family of languages supported by
GCC [26]—and now includes Java and .NET [18], Python, Ruby
and Haskell [46]. It is also being used for special purpose lan-
guages, such as NVIDIA’s CUDA compiler for GPGPU comput-
ing [34].

LLVM has been designed from the outset as a compiler frame-
work. Compared to generating architecture-specific code or gen-
erating a portable low-level language, such as C, LLVM has the
following advantages:

• Architecture support: LLVM has cross-compilation support for
a range of architectures, including x86[ 64], PowerPC, and
ARM. Moreover, it has support for high-throughput instruction
sets, such as AVX-512, Intel’s Xeon Phi [37], and PTX [34].

• Optimisation passes: LLVM implements a large number of
compiler optimisations, including those that require machine
specific knowledge. Individual optimisations can be chosen and
ordered at compile time, and new optimisation passes can be
loaded dynamically.

• Online compilation: LLVM offers several online compilation
options, including an interpreter and JIT compiler. This is ide-
ally suited to Accelerate programs, which are generated and op-
timised at runtime.

• Language representation: Operations in LLVM are represented
in static single-assignment (SSA) [14] form, where every vari-
able is assigned to once and never updated. Given the well-
known correspondence between SSA and �-calculus [2, 24],
LLVM’s intermediate language is a convenient target for the
purely functional Accelerate language. Moreover, it allows us
to avoid certain representation problems that we encountered in
our original CUDA backend [9, 32].

3.1 The LLVM Intermediate Representation
LLVM IR is a strongly-typed, low-level language in static single-
assignment (SSA) format. It consists of sequences of register in-
structions such as add, subtract, and branch, operating over an in-
finite set of temporaries of the form %0, %1. . . . For example, the
following defines a function map that loops over an input array xs,
adding one to each element and storing the result into the array ys:

https://github.com/blambo/accelerate-repa
https://github.com/HIPERFIT/accelerate-opencl/
https://github.com/AccelerateHS/accelerate-backend-kit/tree/master/icc-opencl
https://github.com/AccelerateHS/accelerate-backend-kit/tree/master/icc-opencl
https://github.com/AccelerateHS/accelerate-c
https://github.com/AccelerateHS/accelerate/issues/37
https://github.com/AccelerateHS/accelerate/issues/45
https://github.com/AccelerateHS/accelerate/issues/50
https://github.com/AccelerateHS/accelerate/issues/57
https://github.com/AccelerateHS/accelerate/issues/66
https://github.com/AccelerateHS/accelerate/issues/79
https://github.com/AccelerateHS/accelerate/issues/91
https://github.com/AccelerateHS/accelerate/issues/93
https://github.com/AccelerateHS/accelerate/issues/114
https://github.com/AccelerateHS/accelerate/issues/124
https://github.com/AccelerateHS/accelerate/issues/168


define void @map(i64 %ix.start , i64 %ix.end, float * %ys, float * %xs) {
entry :

%0 = icmp slt i64 % ix.start , %ix.end
br i1 %0, label %for1.top , label % for1.exit

for1.top :
%1 = phi i64 [ %6, %for1.top ], [ % ix.start , %entry ]
%2 = getelementptr float * %xs, i64 %1
%3 = load float * %2
%4 = fadd float 1.000000e+00, %3
%5 = getelementptr float * %ys, i64 %1
store float %4, float * %5
%6 = add i64 %1, 1
%7 = icmp slt i64 %6, %ix.end
br i1 %7, label %for1.top , label % for1.exit

for1.exit :
ret void

}

Instructions are annotated with the type of their operands—float
for single-precision floating point numbers, i64 for (signed or
unsigned) 64-bit integers, i1 for Bool, and so forth. Applying an
instruction such as fadd to operands of incorrect type is an error
and is checked throughout the LLVM compilation pipeline.

LLVM IR can take three isomorphic forms: the above textual
representation, a dense binary bitcode for serialisation, and an in-
memory data structure, which all LLVM transformations passes use
internally. Our goal is to statically guarantee that we only generate
well-typed, in-memory LLVM IR, while simultaneously assuring a
range of higher-level properties as discussed next.

4. Type Preservation
Accelerate is embedded in Haskell. More precisely, as illustrated by
the examples of Section 2, Accelerate programs are comprised of
Haskell expressions of type Acc a (representing embedded data-
parallel array computations) and Exp e (representing embedded
scalar computations). Hence, the Haskell compiler assigns types
to Accelerate programs by way of type checking the Haskell code
representing an Accelerate program. For example, consider incre-
menting each element of a vector of Floats:

inc :: Acc (Vector Float) ! Acc (Vector Float)
inc = map (+1)

Here, the map is not Haskell’s standard function on lists, but rather
Accelerate’s cousin operating on arrays of arbitrary rank:

map :: (Shape ix, Elt a, Elt b)
) (Exp a ! Exp b)
! Acc (Array ix a)
! Acc (Array ix b)

For a given array shape or index domain ix and array ele-
ments of type a and b, it takes a scalar Accelerate function
of type Exp a ! Exp b and an embedded array computation
Acc (Array ix a) producing an ix-dimensional array of as to
produce a new embedded array computation that yields an array
of the same dimensionality, but with elements of type b. In our
example inc, map is used on a Vector, which is simply a one-
dimensional (rank-1) array:

type Vector e = Array DIM1 e

The operator (+) is our old friend of the Num type class by way of
an instance with head:

instance (Elt t, IsNum t) ) Num (Exp t)

In other words, numeric operators may be used with scalar Acceler-
ate expressions provided the values produced by those expressions
are admissible array element types, indicated by the Elt constraint,

and members of the type class IsNum, which we discuss in the fol-
lowing subsections.

The first phase of Accelerate’s type-preserving compilation
pipeline reifies Accelerate programs—i.e., expressions of type
Acc a and Exp e—as data structures in Haskell without losing any
type information. It is well known that this can be achieved by the
use of Generalised Algebraic Data Structures (GADTs) [3, 7, 36].
We take this a step further by also typing the embedded program’s
binding structure, a technique that originated from the realm of
programming with dependent types [1].

4.1 Typed AST
To appreciate the representation of our running example map (+1),
it is important to remember that the section (+1) is a Haskell
shorthand for the lambda abstraction \x ! x + 1, which in de
Bruijn form is � ◆0 + 1, where ◆0 represents the innermost lambda
bound variable. This leads us to the following definition of inc,
after it has been reified:

inc :: Acc (Vector Float) ! Acc (Vector Float)
inc arr =
Acc $
Map
(Lam (Body ��first argument to map
PrimAdd (hIsNum Float dictionaryi)
�PrimApp�
Tuple (NilTup

�SnocTup� (Var ZeroIdx) ��de Bruijn index 0
�SnocTup� (Exp (Const 1)))))

arr �� second argument to map

The data constructor Map represents the map function, Lam intro-
duces a de Bruijn binder, and Body marks a function body. The
argument of Var is a typed de Bruijn index represented as a GADT:

data Idx env t where
ZeroIdx :: Idx (env, t) t
SuccIdx :: Idx env t ! Idx (env, s) t

Such an index projects a type t out of the type level environment
env ensuring that bound variables are used at the correct type. This
representation provides strong guarantees about the correct use of
bound variables under program transformations and, as we will
discuss in the following section, eliminates a common source of
errors. The conversion from higher-order abstract syntax (HOAS)
to de Bruijn form goes hand in hand with sharing recovery as we
detailed previously [32].

PrimAdd represents uncurried addition, which, by way of
PrimApp, is being applied to a pair of its two arguments. We
represent tuples as snoc lists. This simplifies the rest of the code
generator as we do not have to deal with n-tuples, but only with
nested pairs. These are semantically isomorphic as all Accelerate
functions and compound data types are strict.

Following the implementation of type classes in Haskell [21,
35], we pass explicit dictionaries to overloaded functions, such as
addition represented by PrimAdd. We discuss this next.

4.2 Reified Type Dictionaries
When GHC desugars Haskell programs after type checking, it turns
type class constraints into explicit method dictionary parameters,
and the application of overloaded functions into the application of
the function from a dictionary determined by the selected type in-
stance. While GHC desugars into a variant of System F, Accelerate
has to stay within Haskell, and hence, uses GADTs to represent
type class dictionaries while preserving full type information.

We achieve this by class constraints, such as IsNum, which we
previously encountered in the Num instance for Exp a:



class (Num a, IsScalar a) ) IsNum a where
numType :: NumType a

Here NumType is a GADT that reifies the dictionary for the Num
type class. This enables latter stages of the Accelerate compilation
pipeline to vary code generation on the basis of the concrete types
at which overloaded functions have been used. As reified dictio-
naries are data types, pattern matching suffices. Moreover, as we
do not merely use plain data types, but GADTs—i.e., type indexed
types—we can statically ensure that the code generator emits low-
level operations at the appropriate low-level types.

An alternative design would be to implement the code genera-
tor by way of overloaded functions that are, directly or indirectly,
members of type classes, such as IsNum. While this would ensure
type-safety, it would compromise modularity. The Accelerate fron-
tend presents an open interface that allows anybody to write a back-
end without the need to alter the frontend. In our experience, dif-
ferent backends need support functions of differing types. To make
that type-safe, we would need to extend frontend classes whenever
a backend needs a new such function.8 In contrast, typed dictionary
reification enables us to preserve types and achieve modularity at
the same time.

It turns out to be convenient to reify the class hierarchy as well.
Hence, we distinguish between members that belong to Haskell’s
Integral and Floating types:

data NumType a where
IntegralNumType :: IntegralType a ! NumType a
FloatingNumType :: FloatingType a ! NumType a

which we further enumerate to primitive types:

data IntegralType a where
TypeInt :: IntegralDict Int ! IntegralType Int
TypeInt8 :: IntegralDict Int8 ! IntegralType Int8

We have similar groupings such as Bounded or non-numeric types
(such as Char and Bool) to establish a hierarchy of types with
reified dictionaries that allows us to precisely specify which types
are valid at each operation.

For the benefit of Accelerate’s interpreter, which executes Ac-
celerate programs by directly evaluating the AST, the constructors
of the leaf types include all Haskell dictionaries (class instances)
needed to execute overloaded Accelerate functions. For example:

data IntegralDict a where
IntegralDict :: ( Num a, Eq a, · · · )

) IntegralDict a

This ensures the same level of type-safety for the interpreter as for
the code generators.

4.3 Surface versus Representation Types
GPUs are very efficient at processing arrays of elementary type,
such as integral and floating point data, but they are significantly
less efficient at chasing pointers or dealing with aggregate struc-
tures. In fact, the situation for CPUs is similar once SIMD vector
instructions are considered. Moreover, the set of low-level types
that our code generators, and ultimately, LLVM, directly support is
necessarily fixed.

Consequently, Accelerate represents data in a non-parametric
format. The type class Elt determines (a) the set of admissible sur-
face types that can be used as array elements, and hence appear
in scalar expressions; and (b) prescribes a mapping from surface
types to representation types, which consist only of scalar prim-
itives, such as Int and Float, as well as unit () and pair (,).

8 A further, unacceptable, alternative are type erasing query functions.

This mapping from the extensible set of surface types to the closed
set of representation types allows us more flexibility in the source
language, and to represent arrays of tuples in-memory as a tuple
of arrays of unboxed data; that is, in an unzipped “struct-of-array”
representation, which is ideal for SIMD processors.

The mapping from surface to representation types is done by
way of associated type synonyms and type families [8, 41]:

type family EltRepr :: *

type instance EltRepr Int = Int
type instance EltRepr Float = Float
type instance EltRepr (a,b) =

ProdRepr ( EltRepr a, EltRepr b )

The type family ProdRepr defines our canonical tuple format,
representing products as heterogeneous snoc lists using () and (,)
as type-level nil and cons respectively. Similarly to the Elt class,
the IsProduct class encodes the conversion between the surface
and representation type of products as nested pairs:

type instance ProdRepr (a,b) = (((), a), b)
type instance ProdRepr (a,b,c) = ((((), a), b), c)

Note that ProdRepr prescribes the encoding of tuples into nested
pairs at the top level only, whereas EltRepr performs the mapping
all the way down to scalar types. This separation allows us to
define a type-safe tuple projection in ProdRepr, while maintaining
a relationship between the two (non-injective) type encodings.

Much like the type class IsNum, which we discussed in the
previous subsection, Elt includes a method

eltType :: a {� dummy �} ! TupleType (EltRepr a)

that reifies the type of a as a GADT. This is for the same reasons as
previously discussed for IsNum.

5. Type-safe Optimisations
Historically, code optimisation is often problematic when assert-
ing correctness properties of compilers [27]. However, experience
with compilers using typed intermediate languages, and especially
GHC, has demonstrated that code optimisation by transformations,
as a series of localised, correctness preserving equational rewrites,
facilitates a corresponding rewriting of types.

Through a set of benchmarks, our previous work identified the
two most pressing performance limitations of Accelerate at the
time: operator fusion and data sharing [9]. This is not surprising as
these are well known problems affecting functional array languages
and deeply embedded languages, respectively. Hence, to achieve
the safety guarantees of type preservation as well as efficient code,
we need to go beyond previous work and realise type-preserving
sharing recovery, common subexpression elimination, and a type-
preserving fusion framework that produces code that is efficient on
massively parallel SIMD hardware.

In previous work, we discussed our approach to type-safe shar-
ing observation [32], but only outlined the computational aspects
of our approach to array fusion without discussing type preserva-
tion. In the following, we describe how our approach to common
subexpression elimination and our fusion system preserves types
by adopting a transformational approach and reifying and tracking
type equality.

5.1 Manipulating Embedded Programs
To apply transformations to well-typed terms while maintaining the
properties of the program encoded in its type, we need to transform
typed terms in a type- and binding-structure-preserving manner—
we need to take care to manipulate types, type representations, and
de Bruijn-style typed environments appropriately.



5.1.1 Propositional Type Equality
Consider the task of determining whether two subexpressions are
equal, so that the duplicate computation can be eliminated:

�x ! let a = x + 1
b = x + 1

in a + b

How should we implement Exp s == Exp t? If we don’t care
what s and t are, we can define standard heterogeneous equality
as:

heq :: OpenExp env aenv s
! OpenExp env aenv t
! Bool

This signature requires only that the environment types of free
scalar and array variables (called env and aenv, respectively) are
the same, so that we can test equality of typed de Bruijn indices.

However, we often do care about the specific types of terms.
Consider the case of moving under a let-binding, defined for scalar
terms as:

data OpenExp env aenv t where
Let :: (Elt bnd, Elt body)

) OpenExp env aenv bnd
! OpenExp (env, bnd) aenv body
! OpenExp env aenv body

Here, the result type of the bound term—bnd—is existentially
quantified, but to test equality of the body expression, we need
to know something about this type in order to ensure that the
scalar environments are compatible, namely s⇠bnd⇠t. In order
to achieve this, our equality test must, in the positive case, deliver
evidence that our types are equal:9

match :: OpenExp env aenv s
! OpenExp env aenv t
! Maybe (s :⇠: t) �� Just Refl on match

We compute the runtime witness justifying the equality of existen-
tially quantified types by inspecting the reified dictionaries attached
to our terms (§4.2). Now with this evidence-producing heteroge-
neous equality test, we can compare two terms and gain type-level
knowledge when they witness the same value-level types. These
witnesses allow us to test for equality homogeneously, and ensure
that positive results from singleton tests give the bonus of unifying
types for subsequent tests.

We use typed equality in the implementation of common subex-
pression elimination, constant propagation, and for other simplify-
ing rewrites. We also use it to provide type witnesses during code
generation.

5.1.2 Simultaneous Substitution
To implement fusion, we need to be able to perform variable re-
naming (i.e., shifting of de Bruijn indices) and substitution by way
of a type-preserving, value-level substitution algorithm. We closely
follow McBride’s method [31], which views both these operations
as instances of a single traversal, pushing functions from variables
to “stuff” through terms, for a suitable notion of “stuff”. Moreover,
we push a type-preserving but environment-changing operation v
structurally through terms:

v :: 8 t. Idx env t ! stuff env' t

Where the operations differ is in the treatment of variables: renam-
ing maps variables to variables, while substitution maps variables

9 Using propositional equality from Data.Type.Equality.

to terms. We lift this to an operation which traverses terms, lifting
when pushing under bindings and rebuilding terms after applying
v to the variables.

rebuild :: Syntactic stuff ��variables and terms
) (8 t'. Idx env t' ! stuff env' aenv t')
! OpenExp env aenv t
! OpenExp env' aenv t

Overall, the crucial functionality of simultaneous substitution is to
propagate a class of operations on variables closed under shifting.
By choosing an appropriate function v, we define operations such
as weakening, inlining, and function composition on terms; e.g.,

dot :: OpenExp (env, b) aenv c
! OpenExp (env, a) aenv b
! OpenExp (env, a) aenv c

dot f g = Let g (rebuild v f)
where v :: Idx (env, b) c

! OpenExp ((env, a), b) aenv c
v = · · ·

compose :: OpenFun env aenv (b ! c)
! OpenFun env aenv (a ! b)
! OpenFun env aenv (a ! c)

compose (Lam (Body f)) (Lam (Body g))
= Lam (Body (f �dot� g))

5.2 Array Fusion
Most collective operations in Accelerate are array-to-array transfor-
mations. Our fusion algorithm proceeds in two phases: (1) produc-
er/producer, a bottom-up contraction of the AST fuses sequences
of producer operations into a single producer; and (2) producer/-
consumer, a top-down transformation that annotates the AST as
to which nodes should be computed to manifest data, and which
should be delayed, or embedded, into the operation which con-
sumes them, so that their values are generated online without use
of an intermediate array. The second phase is completed later in the
compilation pipeline, when the code for the producer operation is
embedded directly into the skeleton template of the consumer, so
we do not need to consider this aspect further here. See [32] for
background into the approach. The current presentation expands
upon that work and presents those aspects of the algorithm that are
relevant for type preservation.

5.2.1 Producer/Producer Fusion
The basic idea behind our representation of fusable (producer) ar-
rays in Accelerate is well known: represent an array by its size and a
function mapping array indices to their corresponding values. This
method has been used successfully to optimise purely functional ar-
ray programs in Repa [23], but the idea is well known [15, 19]. We
use the following typed representation of fusible producer arrays:10

data Cunctation aenv a where
Done :: Arrays arrs

) Idx aenv arrs ��de Bruijn index
! Cunctation aenv arrs

Yield :: (Shape sh, Elt e)
) Exp aenv sh �� size of result
! Fun aenv (sh ! e) ��compute element at index
! Cunctation aenv (Array sh e)

10 There is also a third producer type which encodes a special case of Yield
that permits more optimisations, but its treatment is similar.



Here, Done injects a manifest term into the type, while Yield
captures a scalar functions that is used to construct an element
at each index. Note that our definition is non-recursive—Done is
not defined in terms of array computations Acc, but instead carry a
de Bruijn index Idx into the array environment.11 This allows our
representation to be embedded within producer terms in the second
phase, with the guarantee that an embedded scalar computation will
not invoke further parallel computations.

The bottom-up contraction of the AST proceeds by converting
terms into this representation, and merging sequences of produc-
ers into a single one. Smart constructors for each producer man-
age the integration with predecessor terms. Scalar functions are
composed using the simultaneous substitution method described
above (§5.1.2). For example, the smart constructor mapD, operating
on the delayed representation, implements the well known fusion
rule to reduce map f . map g sequences into map (f . g) is

mapD :: Fun aenv (a ! b)
! Cunctation aenv (Array sh a)
! Cunctation aenv (Array sh b)

mapD f (Done v)
= Yield (arrayShape v) (f �compose� indexArray v)

mapD f (Yield sh g)
= Yield sh (f �compose� g)

5.2.2 Removing Obstacles
Equational fusion techniques need to be careful to spot fusion op-
portunities in cases where language constructs other than function
application intervene between the two fusible operations. In Accel-
erate’s internal language, the main obstacle is let bindings, as in
this example:

map f $ let xs = use (Array · · · )
in map g xs

In this case, we want to float the let binding out to expose the
producer chain for producer/producer fusion. In general, we float
all let bindings of manifest data out across producer chains.

As the bottom-up contraction of the AST encounters manifest
array data, we collect those terms into the following structure:

data Extend aenv aenv' where
BaseEnv :: Extend aenv aenv
PushEnv :: Extend aenv aenv'

! OpenAcc aenv' a
! Extend aenv (aenv', a)

At the value level, this encodes a heterogeneous snoc-list of lifted-
out terms, while the type captures how an array environment in-
creases once we (eventually) bring these terms back into scope.
Moreover, it provides a type witness for how to weaken a term—
another simultaneous substitution (§5.1.2)—from one environment
to another, where these new bindings have come into scope but no
old bindings have disappeared.

sink :: Syntactic f
) Extend env env' ! f env t ! f env' t

sink env = weaken (v env)
where v BaseEnv = id

v (PushEnv e _) = SuccIdx . v e

Referring to our initial example, as we lift the binding of xs out
through the outer term, Extend captures how to bring map f into

11 Similarly, all collective operations that appear inside scalar expressions
have already been lifted out and let-bound. After all, we don’t want to
execute an arbitrarily complex array computation once for every invocation
of a scalar function.

the same environment type as map g, so that we can apply the mapD
fusion rule from the previous subsection.

During AST contraction, our smart constructor for let-bindings
examines the bound term and proceeds as follows: (1) if it is
manifest data, add it to the list of floated-out terms stored in the
Extend structure; (2) if the binding can be eliminated, inline the
scalar fragments of the delayed array representation directly into
the body term; otherwise, (3) keep the let-binding in place, being
careful to maintain the structure of nested bindings, which would
otherwise increase the scope of bound variables.

Finally, we note that separating the representation of delayed
producers from the auxiliary binding structure is important for
efficiency, so that we only sink a term for (possible) fusion via
our smart constructors once, rather than at every analysis site.

6. Type-safe Code Generation
6.1 Bringing Static Types to LLVM
LLVM’s intermediate language (IR), in-memory, represents type
information only as a value-level data structure, as is common in
compilers. Instead, we want to track IR types as Haskell types in
the LLVM Haskell binding, such that we can statically guarantee
to only generate type correct LLVM programs—eliminating the
possibility of LLVM type errors at application runtime. To this end,
we use GADTs to define the LLVM instruction set:

data Instruction a where
Add :: NumType a �� reified dictionary

! Operand a
! Operand a
! Instruction a

Here, an Operand is an argument to an instruction, and can either
be local references (such as the temporaries %1, %2 that we saw in
Section 3.1), or constant values, and are defined in a similar manner
using type-safe GADTs. Instructions in this representation carry
reified dictionaries (§4.2) that can be inspected to reveal which
concrete type the instruction was instantiated with.

From well-typed Accelerate terms, we generate a well-typed
LLVM AST while preserving types. Only in the last step, when
we hand the program over to the standard LLVM (C++) library, do
we convert the LLVM types captured in the Haskell type system
into LLVM value-level types. To do so, we build upon the existing
llvm-general package,12 which provides FFI bindings into the
LLVM API to construct, manipulate, and compile the generated
code. We reflect LLVM types as values using an upcast type class
of the following form:

class Upcast typed untyped where
upcast :: typed ! untyped

instance Upcast (NumType a) LLVM.Type
instance Upcast (Instruction a) LLVM.Instruction

6.2 Representing Complex Types
Even when representing LLVM IR as GADTs and properly track-
ing types, individual LLVM instructions operate only on primitive
types such as Int and Float. Hence, we need to establish a map-
ping between instructions on scalar values to the much more ex-
pressive set of types characterised by Elt—which also includes
nested tuples and, moreover, is user extensible. As we discussed
before, for the sake of modularity, we require a strict separation
between the Accelerate frontend and the various backends. This is

12 http://hackage.haskell.org/package/llvm-general

http://hackage.haskell.org/package/llvm-general


where the representation types, which form the codomain of the
previously discussed type family EltRepr, come into play.

We define the LLVM IR representation of a surface type a by a
type constructor IR that is parameterised by a. In its definition, we
use the type family EltRepr to map the surface type a to its repre-
sentation type EltRepr a, which in turn is the type combining the
LLVM operands representing a.

data IR a where
IR :: Operands (EltRepr a) ! IR a

The constructor Operands, in turn, is a data type family wrap-
ping well-typed LLVM operands. Due to EltRepr, Operands only
needs to be defined over the closed set of representation types—
primitive types, unit, and pair—but in IR still supports the full
range of scalar surface types characterised by Elt.

data family Operands :: *
data instance Operands () = OP_Unit
data instance Operands Int = OP_Int (Operand Int)
data instance Operands Int8 = OP_Int8 (Operand Int8)

· · ·
data instance Operands (a,b)
= OP_Pair (Operands a) (Operands b)

This mapping from surface to representation types effectively en-
codes aggregate structures as collections of multiple scalar values.
As an example, a value of surface type (Int, Float) has repre-
sentation type (((), Int), Float), and a corresponding encod-
ing into IR as:

IR $ OP_Unit
�OP_Pair� (OP_Int hOperand Inti)
�OP_Pair� (OP_Float hOperand Floati)

The last piece of the puzzle is how to convert terms from this
encoding into the individual operands which serve as arguments to
LLVM instructions. Our reified dictionaries provide a solution here
as well, as we can inspect them to determine the concrete type of a
term, and thus learn how to unpack the encoding:

class IROP dict where
op :: dict a ! IR a ! Operand a
ir :: dict a ! Operand a ! IR a

instance IROP IntegralType where
op (TypeInt _) (IR (OP_Int x)) = x
op (TypeInt8 _) (IR (OP_Int8 x)) = x

This also explains why we require a data family for Operands.
A type synonym family wouldn’t have given us this one-to-one
mapping.

6.3 Mapping Accelerate to LLVM IR
Finally, we have the pieces necessary to translate our well-typed
Accelerate programs into well-typed LLVM programs. We con-
tinue our running example program inc from Section 4.1, show-
ing how to translate each fragment of the lambda abstraction
\x ! x + 1 into well-typed IR.

6.3.1 Primitive Function Application
As discussed earlier, the addition operation is encoded with the
constructor PrimAdd, representing uncurried addition, which by
way of PrimApp is applied to its two arguments in pair form. To
generate the corresponding LLVM instructions, overall we require:

llvmOfPrimFun
:: PrimFun (a ! b) ! IR a ! IR b

llvmOfPrimFun (PrimAdd t) = uncurry (add t)
· · ·

Here, uncurry is overloaded to operate on the IR data structure.
Primitive scalar operations carry a dictionary reifying the con-
crete type of their arguments—here t a reified NumType Float
dictionary—which we can use as evidence to unpack IR Float
into Operand Float using the method of the previous subsection.
Armed with a pair of scalar operands, we can finally apply our well-
typed LLVM instructions from Section 6.1.

add :: NumType a ! IR a ! IR a ! IR a
add t (op t ! x) (op t ! y) = ir t (Add t x y)

The next subsections discuss how to generate the arguments for
the application, namely a fragment of type IR (Float, Float).

6.3.2 Constants
Scalar constants are defined in Accelerate using the following
GADT constructor:

Const :: Elt t ) EltRepr t ! OpenExp env aenv t

Here, t ranges over all types in Elt: it is not limited to elementary
values. If t represents on aggregate type, the resulting IR will
consist of multiple elementary constants.

We can examine the structure of the embedded constant value
by reifying its type using eltType (§4.3). Pattern matching on
the resulting GADT allows us to walk over the structure of the
representation type of t, which consists of nested tuples formed
from unit, pair, and primitive scalar values.

constant :: TupleType a ! a ! Operands a
constant UnitTuple ()

= OP_Unit
constant (PairTuple tx ty) (x,y)

= OP_Pair (constant tx x) (constant ty y)
constant (ScalarType dict) x

= · · ·

When we encounter a scalar value we will be equipped with a rei-
fied dictionary dict, that can be inspected to uncover the concrete
type of the value x::a, and inject it as a fragment of LLVM IR.

6.3.3 Tuples
Our primitive function application construct PrimApp treats all op-
erations as unary functions. Referring to our example \x ! x + 1,
we must create a pair consisting of the constant 1 and the innermost
lambda bound variable x. Scalar tuples are defined in Accelerate
using the following constructor:

Tuple :: (Elt t, IsProduct t)
) Tuple (OpenExp env aenv) (ProdRepr t)
! OpenExp env aenv t

The type Tuple represents a data structure reifying the structure
of the ProdRepr type as a snoc-list constructed from () and (,).
Critically, since our definition of EltRepr captures its relationship
to ProdRepr, the conversion becomes straightforward.

llvmOfTuple' :: TupleType t
! Tuple (OpenExp env aenv) tup
! Operands t

llvmOfTuple' UnitTuple NilTup
= OP_Unit

llvmOfTuple (PairTuple ta tb) (SnocTup a b)
= OP_Pair · · ·

7. The Accelerate-LLVM Backend Framework
LLVM is a reusable framework, portable across diverse architec-
tures, and in the same spirit, we introduce the Accelerate-LLVM



backend framework: a set of reusable components that reduce the
marginal cost of creating future Accelerate backends, increase
maintainability by sharing as much code as possible, and enable
all backends to share the type-safety benefits outlined in the pre-
vious sections. We validated this approach by building two new
Accelerate backends: (1) a vectorising multicore CPU backend,
and (2) a new GPU backend.

7.1 Architecture Specific Considerations
The Accelerate-LLVM framework facilitates the construction of
backends targeting different hardware architectures by using LLVM
IR as a common intermediate language. However, although LLVM
is able to cross-compile to a variety of architectures, code portabil-
ity still does not come for free. Our backend framework provides
a set of reusable components for operations such as compilation,
code generation, and execution, where architecture-specific be-
haviour is established through a set of classes parameterised by the
architecture being targeted.

Consider the task of code generation. In order to produce effi-
cient code on the CPU or GPU, we must generate LLVM that is
specific to a target architecture. For example, the behaviour of con-
current threads executing our running example program map (+1)
will be different: on a multicore CPU we will split the input into
contiguous chunks and assign each thread a different piece, but on
a GPU, threads must process the array cooperatively in order to
maintain memory coalescing and avoid thread divergence. As with
our existing CUDA backend [9], code generation is based around
the idea of algorithmic skeletons [12]. When compiling a collec-
tive operation, the Accelerate-LLVM framework generates code for
each of the parameters of the collective operation, such as the sec-
tion (+1), which will be the same for all architectures, and the
backend implementor need only define how to combine these frag-
ments into the complete skeleton.

Overall, the Accelerate-LLVM framework is designed to expose
only the architecture-specific parts of backend construction, while
reusing common infrastructure and minimising boilerplate.

7.2 Composable Dynamic Scheduling
Accelerate is aimed at high performance. Hence, we need to gen-
erate scalable code that can make effective use of increasing core
counts. Static scheduling of regular array operations with many in-
dependent computations, such as map f xs, is easy: the number of
elements in the input xs can be divided by the number of processors
at runtime to yield the number of elements to be assigned to each
core. While this works well, when each application of the function
f completes within approximately the same amount of time, it re-
sults in load imbalance and poor performance when each processor
performs differing and unpredictable amounts of work.

Figure 2 shows two example applications that exhibit unbal-
anced workloads. The first is a Mandelbrot set visualisation com-
puted with the escape-time algorithm. In the output image, the pix-
els rendered black take longer to compute than all the others. The
second image is the output from a real-time ray tracer, where those
parts of the image showing many reflections take longer to com-
pute than others. Although both of these examples are known in the
folklore as being “embarrassingly parallel”, as each pixel is com-
puted independently of all others, they do not exhibit regular data
parallelism due to the unbalanced workloads.

To address such unbalanced workloads, the Accelerate-LLVM
framework includes a set of reusable dynamic scheduling compo-
nents based on work stealing [4], which can be composed in the
style of Foltzer et al. [17]. In particular, our CPU backend uses a
scheduler based on lazy binary splitting [47].

Figure 2. The Mandelbrot set (top) and a ray traced scene featur-
ing multiple reflections (bottom). Both these workloads are unbal-
anced, as the time to compute each pixel varies.

8. Benchmarks
The objective of this paper is code safety by way of compila-
tion with type preservation. However, in the domain of high-
performance array languages, code safety is not going to be ap-
preciated if it comes at the expense of performance. Hence, we
summarise the performance of the new Accelerate-LLVM CPU
and GPU backends with a set of not previously published bench-
mark results. A summary of those results is in Table 1, where the
runtimes for CPU-based programs report the best result attained re-
gardless of number of cores used. Figure 3 shows the strong scaling
performance of the benchmark programs on the CPU.

Benchmarks were conducted using a single Tesla K40c GPU
(compute capability 3.5, 15 multiprocessors = 2880 cores at
750MHz, 11GB RAM) backed by two 12-core Xeon E5-2670
CPUs (64-bit, 2.3GHz, 32GB RAM, hyperthreading is enabled)
running GNU/Linux (Ubuntu 14.04 LTS). We used GHC-7.8.4,
LLVM-3.4.2, and NVCC-6.5.12. Haskell programs are compiled
via LLVM using the recommend set of flags for Repa programs,13

and run with RTS options to set thread affinity and match the allo-
cation size to the processor cache size.14 CPU results are generated
using criterion15 via linear regression. In order to exclude differ-
ences between the runtime systems of our two GPU backends, we
focus on generated code performance and report GPU results as
mean kernel execution time.16

8.1 Black-Scholes Option Pricing
The Black-Scholes algorithm solves a partial differential equation
for modelling a stock option under certain assumptions. It is a bal-

13 -Odph -rtsopts -threaded -fllvm -optlo-O3
-fno-liberate-case -funfolding-use-threshold1000
-funfolding-keeness-factor1000
14 -qa -A30M -Nn
15 http://hackage.haskell.org/package/criterion
16 The exact number of iterations is controlled via criterion to ensure (for
the overall runtime) R2 � 0.99.

http://hackage.haskell.org/package/criterion


Contender Accelerate Accelerate Accelerate
Benchmark Input size (ms) (CUDA) (ms) (LLVM-CPU) (ms) (LLVM-GPU) (ms)

Black Scholes 20M 255.8 (Repa) 3.023 (1.18%) 68.83 (26.9%) 3.446 (1.37%)
Mandelbrot 2M 16.72 (Repa) 3.761 (22.5%) 16.67 (99.6%) 2.284 (13.7%)
N-Body 32k 17.39 (CUDA) 113.0 (649%) 63.39 (365%) 107.9 (620%)
Ray tracer 2M 28.67 (Repa) 5.065 (17.7%) 24.01 (83.7%) 10.80 (37.7%)
MD5 hash 14M 38.60 (Hashcat) 10.51 (27.2%) 22.67 (58.7%) 13.51 (35.0%)

Table 1. Benchmark summary

anced workload across all elements of the input; hence, it provides
us with an estimate of the overhead incurred due to the dynamic
work scheduling strategy in the Accelerate-LLVM CPU backend.

Comparing the CPU-based implementations, Accelerate enjoys
a significant performance advantage over Repa, for both the se-
quential (2.3⇥) and parallel (55.6⇥ vs. 15.0⇥ speedup) execu-
tions. One source of this good performance is that Accelerate gen-
erates a single tight loop, whereas the GHC generated Repa code is
spread over several functions called in continuation passing style.
Both Repa and Accelerate use a non-parametric representation for
arrays, so both implementations operate over three input and two
output arrays of unboxed data. The Accelerate generated code is-
sues three floating-point loads and two floating-point stores per
loop iteration, whereas the code produced by GHC includes a total
of 34 and 29 floating-point loads and stores, respectively. We specu-
late that another source of the performance discrepancy is because
GHC does not include aliasing information in the LLVM code it
generates, resulting in fewer optimisations being applied. The GHC
produced code also includes a significant number of integer loads
and stores (398 and 527, respectively) for loop counters and func-
tion pointers.17 In this benchmark, LLVM determines that it is pos-
sible but not beneficial to vectorise the Accelerate generated code
due to the use of log and exp.

Comparing GPU-based implementations, the LLVM-based
code is slightly slower than that produced via CUDA. Internally,
the CUDA compiler is based on LLVM [34], but additionally
includes its own set of proprietary (closed source) optimisation
passes, which we believe account for the extra performance from
NVIDIA’s compiler.

8.2 Mandelbrot Fractal
The Mandelbrot set is generated by sampling values c in the com-
plex plane, and determining whether under iteration of the complex
quadratic polynomial zn+1 = z2n + c that |zn| remains bounded
however large n gets. In the image shown in Figure 2, each pixel
corresponds to a point c in the complex plane, and its colour de-
pends on the number of iterations n before the relation diverges.

The Mandelbrot program has no array-valued inputs, but pro-
duces a single output array of 32-bit words encoded as RGBA data.
As there are no array aliasing issues, the LLVM optimiser is able
to optimise the GHC produced Repa code as well as the code pro-
duced by Accelerate, and performance of both is very similar. How-
ever, the Repa code does experience drops in performance at sev-
eral points; we speculate that Repa’s static scheduling strategy of
the unbalanced workload happens to place an unusually large pro-
portion of the work onto a small number of the cores in these cases.
Since we use a dynamic work-stealing based scheduler, we were
able to more evenly distribute the work.

Comparing GPU implementations, we find that the code pro-
duced by Accelerate is actually faster than that produced by
NVIDIA’s compiler. Examining the generated PTX (assembly)

17 For the GHC produced code, quoted numbers are after -O1 optimisation,
which removes all alloca instructions and associated loads & stores.

code, we find that LLVM (1) removed a branch in the inner loop, re-
placing a short-circuit boolean-and with a logical-and; (2) produced
six fused floating-point multiply-add instructions in the loop, ver-
sus three for NVCC; and (3) requires only 29 registers per thread,
compared to 34 for NVCC—this results in the LLVM code be-
ing able to launch the maximum number of threads, whereas the
NVCC code is limited to 75% thread occupancy. We speculate that
this difference is due to NVCC being based on an older version
of LLVM (based on the behaviour of the closed-source NVVM
optimisation module, which accepts only up to LLVM-2.9 syntax).

8.3 N-Body Gravitational Simulation
The n-body example simulates Newtonian gravitational forces on
a set of massive bodies in 3D space, using a precise (but expensive)
O(n2) algorithm. The Repa implementation suffers from the same
problem as the Black-Scholes benchmark, as the computation uses
ten input and output arrays to track the mass, position, velocity, and
acceleration of each body (12.8⇥ sequential, 313.3⇥ vs. 20.5⇥
parallel speedup). Another source of our good performance is that
the code that our backend generates is SIMD vectorised by LLVM.

Comparing the GPU implementations, although we have dou-
bled the performance of this program over our previous work [32],
the hand-written CUDA version is still several times faster, as it
uses on-chip shared memory to reduce the memory bandwidth re-
quirements of the program. The shared memory is essentially a
software managed cache, and making automatic use of it remains
an open research problem [29].

8.4 Ray Tracer
Ray tracing is a technique for generating an image by tracing the
path of light through pixels in an image plane and simulating the
effects of its encounters with virtual objects. The sample scene is
shown in Figure 2. The technique is capable of producing images
with a high degree of realism, but has a high computational cost
compared to scanline rendering methods. Since the path of each
individual ray varies depending on the number of objects it en-
counters, the amount of work performed at each pixel varies. We
believe that NVIDIA’s proprietary optimisation module gives it an
edge in performance relative to the LLVM GPU backend.

8.5 MD5 Hash
The MD5 message-digest algorithm [38] is a cryptographic hash
function producing a 128-bit hash value that can be used for crypto-
graphic and data integrity applications. Figure 1 shows how to com-
pute the hash for 512-bits of input (16⇥32-bit words) in Accelerate.
We compare our CPU backend to Hashcat, the “self-proclaimed
worlds fastest CPU-based password recovery tool” (according to
Wikipedia). We performed benchmarking using Hashcat’s bench-
mark mode, but as Hashcat is closed source, we cannot verify that
this is a fair comparison. Hence, this comparison should only be
taken as indicative of our code generator being competitive, but
without final judgement of how it ranks versus Hashcat. One source
of the good performance of the code is the SIMD vectorisation per-
formed via LLVM.
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Figure 3. Strong scaling of benchmark programs

9. Related Work
There is ample previous work on type-preserving compilation
(e.g., [20, 33, 45]) and on full scale verification (e.g., [25, 27]).
However, neither has so far been used from source to low-level
code in a runtime compiler, aimed at high-performance, nor has it
been demonstrated for a practical embedded language.

Repa [23, 28] is a Haskell library for parallel array program-
ming on shared-memory SMP machines with very good perfor-
mance. Repa also uses the delayed/manifest representation split on
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which our Cunctation type is based. Repa is not based on an em-
bedded language, but on library functions compiled by GHC’s code
generator, which preserves types, but only as values. Hence, a sep-
arate CoreLint pass, only used during regression testing, is needed
for type checking. Section 8 provides a quantitative comparison.

Delite/LMS [6, 39, 40] is a parallelisation framework for DSLs
in Scala that uses library-based multi-pass staging to specify com-
plex optimisations in a modular manner. Like Accelerate, Delite is
a modular system that supports multiple code generators and targets
CPU and GPU systems. Unlike Accelerate, its compiler pipeline is
not type preserving, and code generation is by pasting strings.

Vertigo [16], Nikola [30] and Obsidian [44] are EDSLs in
Haskell that generate GPU code. None of these systems preserves
source language types throughout the pipeline and none of them are
able to generate CPU and GPU code, or currently support multiple
backends. Moreover, Accelerate supports a significantly richer set
of types and computations.
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