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Abstract. Special purpose embedded languages facilitate generating
high-performance code from purely functional high-level code; for ex-
ample, we want to program highly parallel GPUs without the usual high
barrier to entry and the time-consuming development process. We pre-
viously demonstrated the feasibility of a skeleton-based, generative ap-
proach to compiling such embedded languages.
In this paper, we (a) describe our solution to some of the practical prob-
lems with skeleton-based code generation and (b) introduce our approach
to enabling interoperability with native code. In particular, we show, in
the context of a functional embedded language for GPU programming,
how template meta programming simplifies code generation and optimi-
sation. Furthermore, we present our design for a foreign function interface
for an embedded language.

1 Introduction

Accelerate is an embedded language for general-purpose GPU programming. It is
implemented in Haskell, which also serves as its host language, and generates op-
timised CUDA code [14] from regular, multi-dimensional array programs [2,13].
Accelerate is an example of a class of embedded languages aiming at simplif-
ing the programming of specialised high-performance architectures by offering
a restricted high-level language with a specialised code generator. Other recent
examples are Nikola [12], Obsidian [4], Delight/LMS [19], as well as embedded
hardware description languages [1,10]. These embedded languages reuse part of
the language infrastructure of their host language, while supplying a dedicated
and specialised code generator. This reuse is in contrast to standalone languages
with similar aims, such as StreamIT [22], Halide [18], and NOVA [7].

Among those languages, Accelerate’s implementation is unique by being
based on a generative, template-based code generator, in the spirit of Cole’s algo-
rithmic skeletons [6]. The main advantage of this approach to code generation is
the simplicity with which code idioms of the target architecture can be adopted
— this is crucial for GPU programs as GPUs only delivery high performance if
both control structures and data access patterns are suitably constrained [20].
The approach’s main challenges are two: (1) we need a mechanism to express,
instantiate, and compose code skeletons and (2) we need a fusion framework that



eliminates intermediate structures at skeleton boundaries. In previous work [13],
we addressed the second challenge by a novel fusion framework for SIMD lan-
guages. In the present paper, we address the first challenge and also explain the
interplay between our fusion framework and skeleton instantiation.

Moreover, the use of any special-purpose language in practice needs to ad-
dress interoperability with native code. In particular, we need to be able to use
existing, third-party library code from embedded code as well as enable the use
of embedded code from native applications. To this end, we present the design
of a foreign function interface for embedded array code.

In summary, this paper discusses the generation of high-performance foreign
code by way of code skeletons as well as a foreign function interface for embedded
programs to leverage native libraries and applications. It makes the following
main contributions:

– We discuss how to implement skeleton-based code generation with template
meta programming (Section 2).

– We explain how to implement consumer-producer fusion as skeleton instan-
tiation (Section 3).

– We introduce the to our knowledge first foreign function interface for an
embedded language (Section 4).

– We explain how to integrate embedded Haskell GPU code in a CUDA C
program (Section 5).

We discuss benchmarks in Section 6 and related work in Section 7. All code is
available from https://github.com/AccelerateHS/accelerate.

2 Embedding GPU programs as skeletons

Accelerate offers a range of aggregate operations on multi-dimensional arrays.
They include operations modelled after Haskell’s list library, such as map and
fold, but also array-oriented operations, such as permute and stencil convolu-
tions.

As a simple example, consider the dot product of two vectors:

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

The crucial difference to vanilla Haskell is the Acc type constructor representing
embedded array-valued computations. The types Vector e and Scalar e repre-
sent one-dimensional and zero-dimensional (singleton) arrays, respectively.

The expression zipwith (*) xs ys implements pointwise multiplication of
the two argument vectors, and fold (+) 0 sums the resulting products up to
yield the final, scalar result, wrapped into a singleton array. The type of fold is

fold :: (Shape sh, Elt a) => (Exp a -> Exp a -> Exp a)

-> Exp a -> Acc (Array (sh:.Int) a) -> Acc (Array ix a)

https://github.com/AccelerateHS/accelerate


It uses a binary folding function operating on embedded scalar computations of
type Exp a to implement a parallel reduction along the innermost dimension
of an n-dimensional, embedded array of type Array (ix:.Int) a. The shape
sh:.Int consist of a polymorphic shape sh with one added (innermost) dimen-
sion, which is missing from the shape of the result array.

2.1 Array operations as skeletons

Accelerate’s CUDA1 backend is based around the idea of algorithmic skele-
tons [6]. In other words, the backend implements each of the aggregate array
operations, such as map, by way of a CUDA C code template that is parame-
terised with array types and worker functions, such as the mapped function.

This generative approach is attractive for specialised hardware, such as GPUs,
as the CUDA C code templates are hand-tuned to avoid expensive control flow,
ensure efficient global-memory access, and use fast on-chip shared memory for lo-
cal communication, all of which is required for high-performance GPU code [14].
It is much more difficult —and subject to open research questions— to generate
the corresponding code idioms with a synthetic code generator.

In the first version of Accelerate, we implemented CUDA C code templates
and template instantiation with a mixture of C++ templates and C preprocessor
macros — see [2] for details. While workable, this approach turned out to have
a number of problems. Firstly, the use of CPP is fragile and hard to maintain.
Template instantiation by inlining of CPP macros required the use of fixed vari-
ables with no static checking to ensure the consistent use of names or that used
names where defined before their use. Moreover, it was easy to generate code
that wasn’t even syntactically valid. All this seriously complicated maintenance
and further extension of the code generator. Secondly, the approach led to the
generation of dead code whenever specific template instances didn’t use some
of their parameters or fields of structured data. (The CUDA compiler was not
able to remove most of this dead code.) Finally, and most importantly, the use of
CPP did not scale to support the implementation of producer-consumer skeleton
fusion, which is a crucial optimisation, even for code as simple as dot product.

Next, we discuss a new approach to template definition avoiding these prob-
lems. Then, we will discuss the implementation of producer-consumer skeleton
fusion and general template instantiation in the following section.

2.2 Skeletons as template meta programs

Due to the shortcomings of C++ templates and CPP, we explored the use of
template meta programming to implement CUDA skeletons. More specifically,
we use Mainland’s quasiquotation extensions [11] to Template Haskell to define
skeletons as quoted CUDA C templates with splices for the template parameters.

1 CUDA is NVIDIA’s C/C++-based framework for general-purpose GPU program-
ming: http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html


[cunit|

__global__ void map( $params:argIn, $params:argOut ) −− (3)
{

const int shapeSize = size(shOut);

const int gridSize = $exp:(gridSize dev);

for (int ix = $exp:(threadIdx dev); ix < shapeSize; ix += gridSize)

{

$items:(dce x .=. get ix) −− (2)
$items:(setOut "ix" .=. f x) −− (1)

}

}

|]

Listing 1. Accelerate CUDA skeleton for the map operation

Listing 1 displays the skeleton template for the map family of functions
(which also includes zipWith). The [cunit|· · · |] brackets enclose CUDA C
definitions. CUDA uses the __global__ keyword to indicate that map is a GPU
kernel : a single data-parallel computation launched on the GPU by the CPU.
Antiquotations $params:var, $exp:var, $items:var, and $stms:var denote
template parameters using a Haskell variable var to splice CUDA C parame-
ters, expressions, items, and statements, respectively, into the skeleton.

The map skeleton is parameterised by a function f that gets applied to the
individual array elements in the line marked (1). The arguments to f are ex-
tracted from the input arrays in the line marked (2), and we will explain the
meaning of the auxiliary combinators get, setOut, dce, and (.=.) in the next
section. Finally, the arguments to a specific instantiation of the map template
are computed and spliced in the function head marked (3).

As the quasiquoter [cunit|· · · |] executes at Haskell compile time, syntactic
errors in the quotations and antiquotations as well as in their composition are
flagged at compile time; i.e., we can be sure that the generated code is syn-
tactically correct if we can compile our backend. See [11] for more details on
quasiquoters.

3 Instantiating skeletons

In the first, pre-template meta programming version of Accelerate, we generated
one or more CUDA GPU kernels for each aggregate array operation. This scheme
led to superfluous intermediate arrays and array traversals. Recall the body of the
definition of the dot product: fold (+) 0 (zipWith (*) xs ys). The function
zipWith compiles to an instance of the map template that we discussed in the
previous section. Similarly, fold compiles to an instance of the fold template.
As a result, the execution of zipWith produces an array that the fold kernels
consume.



This is not what a CUDA programmer would manually implement; it is more
efficient to inline the zipWith computation into the kernel of the fold. This
strategy eliminates one GPU kernel and an intermediate array that is of the same
size as the two input arrays. To achieve the same performance as handwritten
CUDA code, we developed the array fusion system described in [13].

Our fusion system distinguishes producer-producer and consumer-producer
fusion. The former combines two skeletons that produce complex arrays, whereas
the latter combines an array producer (such as map) with a skeleton reducing
an array (such as fold). Central to our approach is a representation of arrays
as functions, which we call delayed arrays (in contrast to manifest arrays) and
represent as follows:

data DelayedAcc a where

Delayed :: (Shape sh, Elt e)

=> Exp sh −− array extent
-> Fun (sh -> e) −− generate element at index
-> Fun (Int -> e) −− ...at linear index
-> DelayedAcc (Array sh e)

Instead of generating a map skeleton instance for zipWith straight away, we
represent the computation implemented by zipWith as a function —actually, a
pair of functions— together with the extent (domain) of the array as a value of
type DelayedAcc. For more details on this representation, see [13].

As far as skeleton template instantiation goes, the crucial step in Accelerate’s
CUDA backend is the function codegenAcc, which turns an Accelerate array
operation (of type Acc a) into the AST of instantiated skeleton CUDA code
CUSkeleton a:

codegenAcc :: DeviceProperties -> Acc a -> CUSkeleton a

codegenAcc dev (Fold f z a)

= mkFold dev (codegenFun dev f) (codegenExp dev z) (codegenDelayed dev a)

codegenAcc dev (Map f a)

= mkMap ...

Here we see that mkFold, which generates an instance of the fold template, gets
the code generated from a delayed array as its last argument from the call to
codegenDelayed. In the case of the dot product code, that delayed array will be
a delayed representation of zipWith whose code —as an AST— will be passed to
mkFold. In the following, we will discuss template instantiation by our skeleton
constructors such as mkFold and mkMap.

3.1 Consumer producer fusion by template instantiation

The use of template meta programming to implement CUDA skeletons is crucial
to enable consumer-producer fusion by way of template instantiation. In the
dot product example, the delayed producer is equivalent to the scalar function
λix -> (xs!ix) * (ys!ix). The call to mkFold in codegenAcc passes a CUDA
version of this function, which is bound to the argument get in the mkFold
definition given in Listing 2. This delayed producer function is used in the line
marked (1), where it expands to the following C code:



mkFold :: DeviceProperties -> CUFun (e -> e -> e) -> CUExp e

-> CUDelayedAcc (Array (sh :. Int) e) -> CUSkeleton (Array sh e)

mkFold dev combine seed (CUDelayed shape _ get)

= CUSkeleton [cunit|

__global__ void foldAll( $params:argIn, $params:argOut )

{ // omitted veriable declarations

if ( ix < shapeSize ) {

$items:(y .=. get ix)

for ( ix += gridSize; ix < shapeSize; ix += gridSize ) {

$items:(x .=. get ix) −− (1)
$items:(y .=. combine x y)

}

}

$items:(sdata "threadIdx.x" .=. y)

__syncthreads(); −− (2)
$stms:(treeReduce dev combine sdata)

// first thread writes the result to memory

}

|]

Listing 2. Accelerate CUDA skeleton for the foldAll operation

const Int64 v2 = ix;

const int v3 = toIndex(shIn0, shape(v2));

const int v4 = toIndex(shIn1, shape(v2));

y0 = arrIn0_a0[v3] * arrIn1_a0[v4];

The functions shape and toIndex map multi-dimensional indices to linear array
representations. In this example these functions do not contribute anything as
dot product consumes two vectors, and the CUDA compiler is able to remove
the superfluous assignments in this case.

In contrast to the map skeleton, the code generated by mkFold proceeds in two
phases of parallel activities. The first phase is the sequential for loop including
the use of get. The second phase starts after the CUDA __syncthreads()

statement at the line marked (2) and implements a parallel tree reduction [3].

3.2 Instantiating skeletons with scalar code

Most aggregate array operations in Accelerate are parameterised by scalar func-
tions, such as the mapping function for map and the binary operator for fold.
Hence, a crucial part of template instantiation is the inlining of CUDA code
implementing scalar Accelerate functions into template code. Inlining of scalar
functions is always possible as the scalar sublanguage of Accelerate is first-order
and does not support recursion. These restrictions are necessary to generate
GPU code as GPU hardware neither supports large stacks (for recursion) nor
closures (for higher-order functions).



To splice scalar code fragments into the skeleton code of array operations,
we define a typeclass of l-values and r-values to define a generic assignment
operator (.=.), which is, for example, used in the lines marked (1) and (2) in
Listing 1. This representation abstracts over whether our skeleton uses l-values in
single static assignment-style to const declarations or as a statement updating
a mutable variable. The class declarations are the following:

class Lvalue a where

lvalue :: a -> C.Exp -> C.BlockItem

class Rvalue a where

rvalue :: a -> C.Exp

class Assign l r where

(.=.) :: l -> r -> [C.BlockItem]

instance (Lvalue l, Rvalue r) => Assign l r

-- method definition omitted

Furthermore, we can also bring any additional terms into scope before evaluating
an r-value. As an example, see the get code fragment in Section 3.1 in the
calculations of toIndex. We enable this by way of the following class instance:

instance Assign l r => Assign l ([C.BlockItem], r)

-- method definition omitted

3.3 Eliminating dead code

As mentioned before, one problem of the original code generator based on CPP
and C++ templates was its inability to remove some forms of dead code. As
an example, consider the following Accelerate function that projects the first
component of each element of a vector of quadruples:

fst4 :: Acc (Vector (a,b,c,d)) -> Acc (Vector a)

fst4 = map (\v -> let (x,_,_,_) = unlift v in x)

The function unlift turns an embedded scalar expression that yields a quadru-
ple into a quadruple comprising four embedded scalar expressions — hence, we
can pattern match on the quadruple in the let-binding. The use of fst4 can lead
to serious inefficiencies as Accelerate uses a non-parametric array representation:
arrays of tuples are represented as tuples of arrays. This helps us to maintain the
strict memory access rules that CUDA requires for best performance. Clearly,
an efficient implementation of this operation should simply select the first tuple
component of the representation, only taking constant time.

If a value of type Vector (a,b,c,d) is represented as a tuple of arrays, an
application of fst4 should execute in constant time (independent of the size of
the array). As explained in [2], to keep the number of skeletons reasonable, our
CPP/C++-template code generator represented scalar tuples as C-structs and
resorted, during skeleton instantiation, to a family of getter and setter functions



consuming these structs to read and write the elements from the non-parametric
array representation.

As a consequence, in fst4, array elements are copied into a struct, only
for the first element to be extracted again and the struct to be discarded. One
might hope that the CUDA compiler spots (1) the redundant copying of array
elements and (2) that the elements of three of the four arrays are never used.
Alas, it does not and as a result fst4 does not run in constant time, and it
generates considerable memory traffic.

With template meta programming and the Assign type class introduced
previously, we fare much better. Template instantiation inlines the scalar com-
putations, including all array accesses, directly into the AST representing the
skeleton. Instead of packaging the tuple into a struct, we represent it by a set of
individuals values, one per component. During code generation, we keep track of
the values constituting a tuples by maintaining a list of expressions, one for each
component of the tuple. Moreover, a generalised version of the (.=.) operator
allows us to assign all values making up a tuple with one assignment in our meta
programming system — i.e., we use lists of l- and r-values:

instance Assign l r => Assign [l] [r]

-- method definition omitted

Unfortunately, the CUDA compiler doesn’t always eliminate memory reads,
as it does not always detect if the values are not used. Hence, rather than rely on
the CUDA compiler, we explicitly keep track of which values are used at all in
generated scalar code, and when splicing assignments into a skeleton template,
we elide dead statement; i.e., those whose results are not used. The following
instance of the Assign-class uses a flag that is False whenever the assigned
value of an assignment is not used:

instance Assign l r => Assign (Bool,l) r where

(.=.) (used,lhs) rhs

| used = lhs .=. rhs

| otherwise = []

The map skeleton of Listing 1 exploits this: when generating code for the mapped
function f, the function dce :: [a] -> [(Bool,a)] —on the line marked (2)—
determines for each term whether it is being used. Thus, when the code gener-
ated by get reads data from the input array, it doesn’t read unused values.
Consequently, fst4 only touches the array representing the first component of
the quadruple of arrays. In combination with fusion, we completely avoid any
unnecessary memory traffic.

In summary, the use of template meta programming for skeleton definition
and instantiation enables us to combine the advantages of conventional synthetic
code generators (such as def-use analysis for dead code elimination) with those of
generative skeleton-based code generators (such as handwritten idiomatic code
for special-purpose architectures).



4 Using foreign libraries

Accelerate is a high-level language framework capturing idioms suitable for the
massively parallel GPU architectures, without requiring the expert knowledge
needed to achieve good performance at the level of CUDA. However, there are
existing highly optimised CUDA libraries, for example, for high performance
linear algebra and fast Fourier transforms. For Accelerate to be practically useful,
we need to provide a means to use those libraries. Moreover, access to native
CUDA code also provides a developer the opportunity to drop down to raw
CUDA C in those parts of an application where the code generated by Accelerate
is not sufficiently efficient. We achieve access to CUDA libraries and native
CUDA components with the Accelerate Foreign Function Interface (or FFI).

The Accelerate FFI is a two-way street: (1) it enables calling native CUDA C
code from embedded Accelerate computations and (2) it facilitates calling Accel-
erate computations from non-Haskell code. Overall, a developer can implement
an application in a mixture of Accelerate and other languages in a manner that
the source code is portable across multiple Accelerate backends.

Given that Accelerate is embedded in Haskell, it might seem that Haskell’s
standard FFI should be sufficient to enable interoperability with foreign code.
Unfortunately, this is not the case. With Haskell’s standard FFI, we can call
C functions that in turn invoke GPU computations from Haskell host code.
However, we want to call GPU computations from within embedded Accelerate
code and pass data structures located in GPU memory directly to native CUDA
code and vice versa. The latter is crucial, as transferring data from CPU memory
to GPU memory and back is very expensive.

4.1 Importing foreign functions

Calling foreign code in an embedded Accelerate computation requires two steps:
(1) the foreign function must be made accessible to the host Haskell program
and (2) the foreign function must be lifted into an Accelerate computation to
be available to embedded code. For the first step, we use the standard Haskell
FFI. The second step requires an extension to Accelerate.

As a concrete example, let us use the vector dot product of the highly op-
timised CUDA Basic Linear Algebra Subprograms (CUBLAS) library [15]. This
CUBLAS function is called cublasSDot(); it computes the vector dot product
of two arrays of 32-bit floating point values. To access it from Haskell, we use
this Haskell FFI import declaration:

foreign import ccall "cublas_v2.h cublasSdot_v2" cublasSdot

:: Handle

-> Int −− Number of array elements
-> DevicePtr Float -> Int −− The two input arrays, and...
-> DevicePtr Float -> Int −− ...element stride
-> DevicePtr Float −− Result array
-> IO ()



The Handle argument is required by the foreign library and created on initiali-
sation. The DevicePtr arguments are pointers into GPU memory. As mentioned
before, the primary aim of the Accelerate FFI is to ensure that we do not un-
necessarily transfer data between GPU and CPU memory.

To manage device pointers, the Accelerate FFI provides a GPU memory al-
location function allocateArray and a function devicePtrsOfArray to extract
the device pointers of an Accelerate array. We can use these functions to invoke
cublasSdot with GPU-side data:

dotp_cublas :: Handle

-> (Vector Float, Vector Float)

-> CIO (Scalar Float)

dotp_cublas handle (xs, ys) = do

let n = arraySize (arrayShape xs) −− number of input elements
result <- allocateArray Z −− allocate a new Scalar array
((),xptr) <- devicePtrsOfArray xs −− get device memory pointers
((),yptr) <- devicePtrsOfArray ys

((),rptr) <- devicePtrsOfArray result

liftIO $ cublasSdot handle n xptr 1 yptr 1 rptr

return result

The result of devicePtrsOfArray is a nested tuple of pointers, as we represent
arrays of tuples as tuples of arrays; hence, we can have multiple CUDA arrays
for one Accelerate array. In the above example, there is only one, though. The
CIO monad is simply the IO monad enriched with some information used by the
CUDA backend to manage devices, memory, and caches.

4.2 Executing foreign functions with Accelerate

The function dotp_cublas invokes native CUDA code in such a manner that
it directly uses arrays in GPU memory. This leaves us with two challenges: (1)
we need to enable calling functions, such as dotp_cublas, in embedded code
and (2) we need to account for Accelerate supporting multiple backends, while
Accelerate programs should be portable across backends.

To discuss these issues, we need to briefly recap some of the Accelerate in-
ternals described in [2]. Accelerate reifies embedded programs into an abstract
structure tree (AST) encoded as a generalised abstract data type (GADT) to
track types of the embedded language in the host language — i.e., the AST can
only represent well-typed embedded programs. Accelerate compiles fused collec-
tions of array operations into GPU kernels and orchestrates the execution of
those kernels CPU-side by a tree traversal of the AST.

Returning to the two remaining challenges, we address the challenge of en-
abling calling functions, such as dotp_cublas, by extending the AST with a new
node type Aforeign representing foreign calls. One instance of an Aforeign node
encodes the code for one backend, but it also contains a fallback implementation
in case a different backend is being used. The AST data constructor is defined
as follows:



Aforeign :: (Arrays as, Arrays bs, Foreign f)

=> f as bs −− foreign function
-> (Acc as -> Acc bs) −− fallback implementation
-> Acc as −− input array
-> Acc bs

When the tree walk during code execution encounters an Aforeign AST node,
it dynamically checks whether it can execute the foreign function. If it can’t, it
instead executes the fallback implementation. A fallback implementation might
be another Aforeign node with native code for a different backend (e.g., for
OpenCL instead of CUDA), or it can simply be a vanilla Accelerate implemen-
tation of the same functionality that is provided by the foreign code. With a
cascade of Aforeign nodes, we can provide an optimised native implementation
of a function for a range of backends and still maintain a vanilla Accelerate
version of the same functionality for execution in the Accelerate interpreter.

The dynamic check for the suitability of a foreign function is facilitated by
the class constraint Foreign f in the context of Aforeign. The class Foreign
is a subclass of Typeable with instances for data types that represent foreign
functions for specific backends. For the CUDA backend, we have the following:

class Typeable2 f => Foreign f where ...

instance Foreign CUDAForeignAcc where ...

data CUDAForeignAcc as bs where

CUDAForeignAcc :: as -> CIO bs

CUDAFoereignAcc wraps calls to foreign CUDA code executed in the CIO monad.
When the CUDA backend encounters an AST node Aforeign foreignFun alt arg,
it attempts to cast2 the value of foreignFun to type CUDAForeignAcc as bs. If
that cast succeeds, it can unwrap the CUDAForeignAcc and invoke the function
it contains. Otherwise, it needs to execute the alternative implementation alt.

Finally, we can define an embedded vector dot product that uses CUBLAS
when possible and, otherwise, falls back to the version defined in Section 3.1:

dotp' :: Acc (Vector Float) -> Acc (Vector Float)

-> Acc (Scalar Float)

dotp' xs ys = Aforeign (CUDAForeignAcc (dotp_cublas handle))

(uncurry dotp)

(lift (xs, ys))

Foreign calls are not curried; hence, they only have got one argument, which is
an instance of the class Arrays of tuples of Accelerate arrays.

4.3 Embedding foreign scalar functions

So far, we discussed the use of foreign array computations from Accelerate.
However, we also wish to be able to use foreign scalar operations in embedded
array computations. For example, CUDA provides fused floating-point multiply-
add intrinsics with a variety of rounding modes.

2 See Haskell’s Data.Typeable library for details on cast.



We import foreign scalar functions similarly to foreign array computations.
In particular, the AST type Exp for scalar embedded computations includes a
data constructor Foreign that serves the same purpose as Aforeign for Acc:

Foreign :: (Elt x, Elt y, Foreign f)

=> f x y -> (Exp x -> Exp y) -> Exp x -> Exp y

Where we used CUDAForeignAcc to wrap CUDA array computations for use
with Aforeign, we use CUDAForeignExp to wrap scalar CUDA functions for use
with Foreign. However, instead of wrapping a Haskell FFI call, the scalar case
simply encodes the textual representation of the CUDA function in CUDA code.
As discussed in Section 2, scalar code is used to instantiate skeleton templates.
The skeleton code is a template for CUDA code; so, a Haskell function invocation
wouldn’t be appropriate. As in the array case, functions are uncurried, but in
the scalar case, they can only return a single scalar argument:

data CUDAForeignExp x y where

CUDAForeignExp :: IsScalar y

=> [String] -> String -> CUDAForeignExp x y

The first argumentis a list of header files that need to be included when compiling
an instantiated skeleton template including this specific foreign function.

Overall, we define a foreign function based on CUDA’s explicitly fused floating-
point multiply-add intrinsics as follows (using IEEE rounding towards):

fmaf :: Exp Float -> Exp Float -> Exp Float -> Exp Float

fmaf x y z = Foreign (CUDAForeignExp [] "__fmaf_rz")

(\v -> let (x,y,z) = unlift v in x * y + z)

(lift (x, y, z))

5 Embedding embedded programs

Accelerate simplifies writing GPU code as it obviates the need to understand
most low-level details of GPU programming. Hence, we would like to use Accel-
erate from other languages. As with importing foreign code into Accelerate, the
foreign export functionality of the standard Haskell FFI is not sufficient for effi-
ciently using Accelerate from languages, such as C. In the following, we describe
how the Accelerate FFI supports exporting Accelerate code as standard C calls.

5.1 Exporting Accelerate programs

To export Accelerate functions as C functions, we make use of Template Haskell [21].
For example, we might export our Accelerate dot product:

dotp :: Acc (Vector Float, Vector Float) -> Acc (Scalar Float)

dotp = uncurry $ \xs ys -> fold (+) 0 (zipWith (*) xs ys)

exportAfun 'dotp "dotp_compile"



The function exportAfun is defined in Template Haskell and takes the name of
an Accelerate function, here dotp, as an argument. It generates the necessary
export declarations by inspecting the properties of the name it has been passed,
such as its type.

Compiling a module that exports Accelerate computations in this way (say,
M.hs) generates the additional file M_stub.h containing the C prototype for the
foreign exported function. For the dot product example, this header contains:

#include "HsFFI.h"

extern AccProgram dotp_compile(AccContext a1);

A C program needs to include this header to call the Accelerate dot product.

5.2 Running embedded Accelerate programs

One of the functions to execute an Accelerate computation in Haskell is

run1In :: (Arrays as, Arrays bs)

=> Context -> (Acc as -> Acc bs) -> as -> bs

This function comprises two phases: (1) program optimisation and instantiation
of skeleton templates of its second argument and (2) execution of the compiled
code in a given CUDA context (first argument). The implementation of run1In is
structured such that, partially applying it to only its first and second argument,
yields a new function of type as -> bs, where Phase (1) has been executed
already — in other words, it precompiles the Accelerate code. Repeated appli-
cation of this function of type as -> bs executes the CUDA code without any
of the overheads associated with just-in-time compilation.

The Accelerate export API retains the ability to precompile Accelerate code.
The C function provided by exportAfun compiles the Accelerate code, returning
a reference to the compiled code. Then, in a second step, runProgram marshals
input arrays, execute the compiled program, and marshall output arrays:

OutputArray out;

InputArray in[2] = { ... };

AccProgram dotp = dotp_compile( context );

runProgram( dotp, in, &out );

The function dotp_compile was generated by exportAfun 'dotp "dotp_compile".

5.3 Marshalling input and output arrays

Accelerate uses a non-parametric representation of multi-dimensional arrays: an
array of tuples is represented as a tuple of arrays. The type InputArray follows
this convention. It is a C struct comprising an array of integers indicating the
extent of the array in each dimension together with an array of pointers to each
underlying GPU array of primitive data.

typedef struct { int* shape; void** adata; } InputArray;



Benchmark Input Size Contender Accelerate

Black Scholes 20M 6.70 (CUDA) 6.19 (0.92×)
Dot Product 20M 1.88 (CUBLAS) 2.35 (1.25×)
N-Body 32k 54.42 (CUDA) 102.47 (1.88×)
SMVM (protein) 4M 0.641 (CUSP) 0.637 (0.99×)

Table 1. General performance of Accelerate (in ms) — c.f., [13].

Accelerate Accelerate Accelerate
Benchmark Input Size Contender full no fusion no FFI

FFT 512×512 43 (FFTW) 4.36 (0.1×) 5.9 (0.14×) 3658 (8.5×)
High pass 512×512 65 (FFTW) 14.97 (0.23×) 27.82 (0.43×) 21936 (34×)
SmoothLife 128×128 16.21 (MATLAB) 4.01 (0.25×) 6.38 (0.39×) 6829 (42×)

Table 2. Fast Fourier Transform based benchmarks (in ms).

OutputArray includes an extra field, a stable pointer, that maintains a ref-
erence to the associated Haskell-side Array. This keeps the array from being
garbage collected until the OutputArray is explicitly released with freeOutput.

typedef struct { int* shape; void** adata;

HsStablePtr stable_ptr; } OutputArray;

6 Applications and benchmarks

We conducted benchmarks on a single Tesla T10 processor (compute capabil-
ity 1.3, 30 multiprocessors = 240 cores at 1.3GHz, 4GB RAM) backed by two
quad-core Xenon E5405 CPUs (64-bit, 2GHz, 8GB RAM) running GNU/Linux
(Ubuntu 12.04 LTS). The reported runtimes are the average of 100 runs.

Table 1 establishes baseline Accelerate performance, showing a comparison
of kernel runtimes for a selection of Accelerate programs compared to native
CUDA implementations. Accelerate is clearly competitive.

6.1 Fast Fourier Transform (FFT) — foreign import

The row “Accelerate, no FFI” in Table 2 measures a pure Accelerate implemen-
tation of an out-of-place Cooley-Tukey FFT algorithm [8], whereas “Accelerate,
full” uses the FFI to access NVIDIA’s highly optimised CUFFT library [16].
“Accelerate, no fusion” also uses the FFI, but without fusion.

The row labelled “FFT” measures a single forward Fourier transform of a
greyscale image. The row labelled “High pass” is a high-pass filter of an RGB
image, which for each component performs a forward transform, zeros out the
centre (high) frequencies, then performs the inverse transform. Finally, the row
“SmoothLife” measures a generalisation of Conway’s Game of Life to a contin-
uous domain [17], which is based on Fourier transforms.



We compare the single FFT and the high-pass filter to the highly regarded
FFTW library [9] (multithreaded, estimate mode). We compare the Acceler-
ate implementation of SmoothLife to SmoothLife’s reference implementation in
MATLAB (version R2012B). FFTW and MATLAB execute on multicore CPUs.

In all cases, our out-of-place Cooley-Tukey implementation of FFT in pure
Accelerate is much slower than the highly optimised FFTW and MATLAB
multicore implementations. However, once we use the Accelerate FFI to utilise
CUFFT, the Accelerate code clearly outperforms the FFTW and MATLAB im-
plementations. This is although we incur significant overhead due to a mismatch
of the complex number representations of Accelerate and CUFFT. CUFFT rep-
resents complex numbers in a packed AoS format, requiring marshalling to and
from Accelerate’s SoA representation. Array fusion allows this additional over-
head to be integrated into surrounding operations, amortizing the cost of this
impedance mismatch when calling foreign libraries. This is particularly notice-
able in the high pass filter benchmark. We leave native support of packed vector
types to future work.

6.2 N-Body — foreign export

To demonstrate the use of Accelerate code from C, we use an n-body example
simulates Newtonian gravitational forces on a set of massive bodies in 3D space,
using the naive O(n2) algorithm. We export the Accelerate n-body implemen-
tation into an OpenGL program that visualises the positions of the particles
at each step of the simulation. The visualisation program — part of the n-body
example from the NVIDIA CUDA distribution — uses a packed AoS representa-
tion for which we had to introduce additional marshalling. We did not note any
performance difference between executing the Accelerate program from Haskell
compared to execution via the C-based visualisation program. This is because
the O(n) additional marshalling is dominated by the O(n2) n-body calculations.

7 Related Work

Our work is based the quasiquotation extensions to Template Haskell introduced
in [11] to instantiate the skeletons by splicing in parameters and customised code.
The flexibility this approach provides is essential for many of our optimisations.

Nikola [12] and Obsidian [5] also embed GPU computations in Haskell, but
are not based on skeletons. Obsidian offers no FFI. Nikola does not have an FFI
as such, but it allows to embed CUDA code blocks in Nikola programs. Since
it only supports single kernel programs, it only deals with limited interactions
between the imported code and the rest of the EDSL program.

Delite/LMS [19] is a framework for parallel DSLs in Scala using library-based
multi-pass staging. It is not based on skeletons and doesn’t seem to have an FFI.

NOVA [7] is a standalone functional language for GPU programming, which
unlike Accelerate supports nested parallel computations. It also allows importing
foreign functions, but does not appear to have support for exporting NOVA
computations.
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